

 Navigation

 	
 index

 	
 modules |

 	Sphinx 1.2 (hg) documentation

 Welcome

 What users say:

 Cheers for a great tool that actually makes programmers want
 to write documentation!

 Sphinx is a tool that makes it easy to create intelligent and beautiful
 documentation, written by Georg Brandl and licensed under the BSD license.

 It was originally created for the
 new Python documentation, and it has excellent facilities for the
 documentation of Python projects, but C/C++ is already supported as well,
 and it is planned to add special support for other languages as well. Of
 course, this site is also created from reStructuredText sources using
 Sphinx!

 Sphinx is under constant development. The following features are present,
 work fine and can be seen “in action” in the Python docs:

 	Output formats: HTML (including Windows HTML Help), LaTeX (for
 printable PDF versions), manual pages, plain text

 	Extensive cross-references: semantic markup and automatic links
 for functions, classes, citations, glossary terms and similar pieces of
 information

 	Hierarchical structure: easy definition of a document tree, with
 automatic links to siblings, parents and children

 	Automatic indices: general index as well as a module index

 	Code handling: automatic highlighting using the Pygments highlighter

 	Extensions: automatic testing of code snippets, inclusion of
 docstrings from Python modules (API docs), and more

 Sphinx uses reStructuredText
 as its markup language, and many of its strengths come from the power and
 straightforwardness of reStructuredText and its parsing and translating
 suite, the Docutils.

 Documentation

 	
 First steps with Sphinx

 overview of basic tasks

 Contents

 for a complete overview

 	
 Search page

 search the documentation

 General Index

 all functions, classes, terms

 You can also download PDF versions of the Sphinx documentation:
 a version generated from
 the LaTeX Sphinx produces, and
 a version generated
 by rst2pdf.

 Examples

 Links to documentation generated with Sphinx can be found on the
 Projects using Sphinx page.

 For examples of how Sphinx source files look, use the “Show
 source” links on all pages of the documentation apart from this
 welcome page.

 You may also be interested in the very nice
 tutorial on how to
 create a customized documentation using Sphinx written by the matplotlib
 developers.

 There is a Japanese translation
 of this documentation, thanks to Yoshiki Shibukawa.

 Get Sphinx

 Sphinx is available as an easy-installable
 package on the Python Package
 Index.

 The code can be found in a Mercurial repository, at
 http://bitbucket.org/birkenfeld/sphinx/.

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 Sphinx documentation contents

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Sphinx 1.2 (hg) documentation

Sphinx documentation contents

	Introduction
	Conversion from other systems

	Use with other systems

	Prerequisites

	Usage

	First Steps with Sphinx
	Setting up the documentation sources

	Defining document structure

	Adding content

	Running the build

	Documenting objects

	Basic configuration

	Autodoc

	More topics to be covered

	Invocation of sphinx-build
	Makefile options

	Invocation of sphinx-apidoc

	reStructuredText Primer
	Paragraphs

	Inline markup

	Lists and Quote-like blocks

	Source Code

	Tables

	Hyperlinks

	Sections

	Explicit Markup

	Directives

	Images

	Footnotes

	Citations

	Substitutions

	Comments

	Source encoding

	Gotchas

	Sphinx Markup Constructs
	The TOC tree

	Paragraph-level markup

	Table-of-contents markup

	Glossary

	Grammar production displays

	Showing code examples

	Inline markup

	Miscellaneous markup

	Sphinx Domains
	What is a Domain?

	Basic Markup

	The Python Domain

	The C Domain

	The C++ Domain

	The Standard Domain

	The JavaScript Domain

	The reStructuredText domain

	More domains

	Available builders
	Serialization builder details

	The build configuration file
	General configuration

	Project information

	Options for internationalization

	Options for HTML output

	Options for epub output

	Options for LaTeX output

	Options for text output

	Options for manual page output

	Options for Texinfo output

	Options for the linkcheck builder

	Internationalization

	HTML theming support
	Using a theme

	Builtin themes

	Creating themes

	Templating
	Do I need to use Sphinx’ templates to produce HTML?

	Jinja/Sphinx Templating Primer

	Working with the builtin templates

	Sphinx Extensions
	Tutorial: Writing a simple extension

	Extension API

	Writing new builders

	Builtin Sphinx extensions

	Third-party extensions

	Sphinx Web Support
	Web Support Quick Start

	The WebSupport Class

	Search Adapters

	Storage Backends

	Sphinx FAQ
	How do I...

	Using Sphinx with...

	Epub info

	Texinfo info

	Glossary

	Changes in Sphinx
	Release 1.2 (in development)

	Release 1.1.3 (Mar 10, 2012)

	Release 1.1.2 (Nov 1, 2011) – 1.1.1 is a silly version number anyway!

	Release 1.1.1 (Nov 1, 2011)

	Release 1.1 (Oct 9, 2011)

	Release 1.0.8 (Sep 23, 2011)

	Release 1.0.7 (Jan 15, 2011)

	Release 1.0.6 (Jan 04, 2011)

	Release 1.0.5 (Nov 12, 2010)

	Release 1.0.4 (Sep 17, 2010)

	Release 1.0.3 (Aug 23, 2010)

	Release 1.0.2 (Aug 14, 2010)

	Release 1.0.1 (Jul 27, 2010)

	Release 1.0 (Jul 23, 2010)

	Release 0.6.7 (Jun 05, 2010)

	Release 0.6.6 (May 25, 2010)

	Release 0.6.5 (Mar 01, 2010)

	Release 0.6.4 (Jan 12, 2010)

	Release 0.6.3 (Sep 03, 2009)

	Release 0.6.2 (Jun 16, 2009)

	Release 0.6.1 (Mar 26, 2009)

	Release 0.6 (Mar 24, 2009)

	Release 0.5.2 (Mar 24, 2009)

	Release 0.5.1 (Dec 15, 2008)

	Release 0.5 (Nov 23, 2008) – Birthday release!

	Release 0.4.3 (Oct 8, 2008)

	Release 0.4.2 (Jul 29, 2008)

	Release 0.4.1 (Jul 5, 2008)

	Release 0.4 (Jun 23, 2008)

	Release 0.3 (May 6, 2008)

	Release 0.2 (Apr 27, 2008)

	Release 0.1.61950 (Mar 26, 2008)

	Release 0.1.61945 (Mar 26, 2008)

	Release 0.1.61843 (Mar 24, 2008)

	Release 0.1.61798 (Mar 23, 2008)

	Release 0.1.61611 (Mar 21, 2008)

	Projects using Sphinx
	Documentation using the default theme

	Documentation using a customized version of the default theme

	Documentation using the sphinxdoc theme

	Documentation using another builtin theme

	Documentation using a custom theme/integrated in a site

	Homepages and other non-documentation sites

	Books produced using Sphinx

Indices and tables

	Index

	Module Index

	Search Page

	Glossary

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 Introduction

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

Introduction

This is the documentation for the Sphinx documentation builder. Sphinx is a
tool that translates a set of reStructuredText [http://docutils.sf.net/rst.html] source files into various output
formats, automatically producing cross-references, indices etc. That is, if
you have a directory containing a bunch of reST-formatted documents (and
possibly subdirectories of docs in there as well), Sphinx can generate a
nicely-organized arrangement of HTML files (in some other directory) for easy
browsing and navigation. But from the same source, it can also generate a
LaTeX file that you can compile into a PDF version of the documents, or a
PDF file directly using rst2pdf [http://rst2pdf.googlecode.com].

The focus is on hand-written documentation, rather than auto-generated API docs.
Though there is support for that kind of docs as well (which is intended to be
freely mixed with hand-written content), if you need pure API docs have a look
at Epydoc [http://epydoc.sf.net/], which also understands reST.

Conversion from other systems

This section is intended to collect helpful hints for those wanting to migrate
to reStructuredText/Sphinx from other documentation systems.

	Gerard Flanagan has written a script to convert pure HTML to reST; it can be
found at the Python Package Index [http://pypi.python.org/pypi/html2rest].

	For converting the old Python docs to Sphinx, a converter was written which
can be found at the Python SVN repository [http://svn.python.org/projects/doctools/converter]. It contains generic
code to convert Python-doc-style LaTeX markup to Sphinx reST.

	Marcin Wojdyr has written a script to convert Docbook to reST with Sphinx
markup; it is at Google Code [http://code.google.com/p/db2rst/].

	Christophe de Vienne wrote a tool to convert from Open/LibreOffice documents
to Sphinx: odt2sphinx [http://pypi.python.org/pypi/odt2sphinx/].

	To convert different markups, Pandoc [http://johnmacfarlane.net/pandoc/] is
a very helpful tool.

Use with other systems

See the pertinent section in the FAQ list.

Prerequisites

Sphinx needs at least Python 2.5 or Python 3.1 to run, as well as the
docutils [http://docutils.sf.net/] and Jinja2 [http://jinja.pocoo.org/] libraries. Sphinx should work with docutils version 0.7
or some (not broken) SVN trunk snapshot. If you like to have source code
highlighting support, you must also install the Pygments [http://pygments.org/] library.

Usage

See First Steps with Sphinx for an introduction. It also contains links to more
advanced sections in this manual for the topics it discusses.

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 First Steps with Sphinx

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

First Steps with Sphinx

This document is meant to give a tutorial-like overview of all common tasks
while using Sphinx.

The green arrows designate “more info” links leading to advanced sections about
the described task.

Setting up the documentation sources

The root directory of a documentation collection is called the source
directory. This directory also contains the Sphinx configuration file
conf.py, where you can configure all aspects of how Sphinx reads your
sources and builds your documentation. [1]

Sphinx comes with a script called sphinx-quickstart that sets up a
source directory and creates a default conf.py with the most useful
configuration values from a few questions it asks you. Just run

$ sphinx-quickstart

and answer its questions. (Be sure to say yes to the “autodoc” extension.)

There is also an automatic “API documentation” generator called
sphinx-apidoc; see Invocation of sphinx-apidoc for details.

Defining document structure

Let’s assume you’ve run sphinx-quickstart. It created a source
directory with conf.py and a master document, index.rst (if you
accepted the defaults). The main function of the master document is to
serve as a welcome page, and to contain the root of the “table of contents tree”
(or toctree). This is one of the main things that Sphinx adds to
reStructuredText, a way to connect multiple files to a single hierarchy of
documents.

reStructuredText directives

toctree is a reStructuredText directive, a very versatile piece of
markup. Directives can have arguments, options and content.

Arguments are given directly after the double colon following the
directive’s name. Each directive decides whether it can have arguments, and
how many.

Options are given after the arguments, in form of a “field list”. The
maxdepth is such an option for the toctree directive.

Content follows the options or arguments after a blank line. Each
directive decides whether to allow content, and what to do with it.

A common gotcha with directives is that the first line of the content must
be indented to the same level as the options are.

The toctree directive initially is empty, and looks like this:

.. toctree::
 :maxdepth: 2

You add documents listing them in the content of the directive:

.. toctree::
 :maxdepth: 2

 intro
 tutorial
 ...

This is exactly how the toctree for this documentation looks. The documents to
include are given as document names, which in short means that you
leave off the file name extension and use slashes as directory separators.

[image: more info] Read more about the toctree directive.

You can now create the files you listed in the toctree and add content, and
their section titles will be inserted (up to the “maxdepth” level) at the place
where the toctree directive is placed. Also, Sphinx now knows about the order
and hierarchy of your documents. (They may contain toctree directives
themselves, which means you can create deeply nested hierarchies if necessary.)

Adding content

In Sphinx source files, you can use most features of standard reStructuredText.
There are also several features added by Sphinx. For example, you can add
cross-file references in a portable way (which works for all output types) using
the ref role.

For an example, if you are viewing the HTML version you can look at the source
for this document – use the “Show Source” link in the sidebar.

[image: more info] See reStructuredText Primer for a more in-depth introduction to
reStructuredText and Sphinx Markup Constructs for a full list of markup added by
Sphinx.

Running the build

Now that you have added some files and content, let’s make a first build of the
docs. A build is started with the sphinx-build program, called like
this:

$ sphinx-build -b html sourcedir builddir

where sourcedir is the source directory, and builddir is the
directory in which you want to place the built documentation. The -b
option selects a builder; in this example Sphinx will build HTML files.

[image: more info] See Invocation of sphinx-build for all options that sphinx-build
supports.

However, sphinx-quickstart script creates a Makefile and a
make.bat which make life even easier for you: with them you only need
to run

$ make html

to build HTML docs in the build directory you chose. Execute make without
an argument to see which targets are available.

How do I generate PDF documents?

make latexpdf runs the LaTeX builder and readily invokes the pdfTeX
toolchain for you.

Documenting objects

One of Sphinx’ main objectives is easy documentation of objects (in a
very general sense) in any domain. A domain is a collection of object
types that belong together, complete with markup to create and reference
descriptions of these objects.

The most prominent domain is the Python domain. To e.g. document the Python
built-in function enumerate(), you would add this to one of your source
files:

.. py:function:: enumerate(sequence[, start=0])

 Return an iterator that yields tuples of an index and an item of the
 sequence. (And so on.)

This is rendered like this:

	
enumerate(sequence[, start=0])

	Return an iterator that yields tuples of an index and an item of the
sequence. (And so on.)

The argument of the directive is the signature of the object you
describe, the content is the documentation for it. Multiple signatures can be
given, each in its own line.

The Python domain also happens to be the default domain, so you don’t need to
prefix the markup with the domain name:

.. function:: enumerate(sequence[, start=0])

 ...

does the same job if you keep the default setting for the default domain.

There are several more directives for documenting other types of Python objects,
for example py:class or py:method. There is also a
cross-referencing role for each of these object types. This markup will
create a link to the documentation of enumerate():

The :py:func:`enumerate` function can be used for ...

And here is the proof: A link to enumerate().

Again, the py: can be left out if the Python domain is the default one. It
doesn’t matter which file contains the actual documentation for enumerate();
Sphinx will find it and create a link to it.

Each domain will have special rules for how the signatures can look like, and
make the formatted output look pretty, or add specific features like links to
parameter types, e.g. in the C/C++ domains.

[image: more info] See Sphinx Domains for all the available domains and their
directives/roles.

Basic configuration

Earlier we mentioned that the conf.py file controls how Sphinx processes
your documents. In that file, which is executed as a Python source file, you
assign configuration values. For advanced users: since it is executed by
Sphinx, you can do non-trivial tasks in it, like extending sys.path or
importing a module to find out the version your are documenting.

The config values that you probably want to change are already put into the
conf.py by sphinx-quickstart and initially commented out
(with standard Python syntax: a # comments the rest of the line). To change
the default value, remove the hash sign and modify the value. To customize a
config value that is not automatically added by sphinx-quickstart,
just add an additional assignment.

Keep in mind that the file uses Python syntax for strings, numbers, lists and so
on. The file is saved in UTF-8 by default, as indicated by the encoding
declaration in the first line. If you use non-ASCII characters in any string
value, you need to use Python Unicode strings (like project = u'Exposé').

[image: more info] See The build configuration file for documentation of all available config values.

Autodoc

When documenting Python code, it is common to put a lot of documentation in the
source files, in documentation strings. Sphinx supports the inclusion of
docstrings from your modules with an extension (an extension is a Python
module that provides additional features for Sphinx projects) called “autodoc”.

In order to use autodoc, you need to activate it in conf.py by putting
the string 'sphinx.ext.autodoc' into the list assigned to the
extensions config value. Then, you have a few additional directives
at your disposal.

For example, to document the function io.open(), reading its
signature and docstring from the source file, you’d write this:

.. autofunction:: io.open

You can also document whole classes or even modules automatically, using member
options for the auto directives, like

.. automodule:: io
 :members:

autodoc needs to import your modules in order to extract the docstrings.
Therefore, you must add the appropriate path to sys.path in your
conf.py.

[image: more info] See sphinx.ext.autodoc for the complete description of the
features of autodoc.

More topics to be covered

	Other extensions (math, intersphinx, viewcode, doctest)

	Static files

	Selecting a theme

	Templating

	Using extensions

	Writing extensions

Footnotes

	[1]	This is the usual lay-out. However, conf.py can also live in
another directory, the configuration directory. See
Invocation of sphinx-build.

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 Invocation of sphinx-build

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

Invocation of sphinx-build

The sphinx-build script builds a Sphinx documentation set. It is
called like this:

$ sphinx-build [options] sourcedir builddir [filenames]

where sourcedir is the source directory, and builddir is the
directory in which you want to place the built documentation. Most of the time,
you don’t need to specify any filenames.

The sphinx-build script has several options:

	
-b buildername

	The most important option: it selects a builder. The most common builders
are:

	html

	Build HTML pages. This is the default builder.

	dirhtml

	Build HTML pages, but with a single directory per document. Makes for
prettier URLs (no .html) if served from a webserver.

	singlehtml

	Build a single HTML with the whole content.

	htmlhelp, qthelp, devhelp, epub

	Build HTML files with additional information for building a documentation
collection in one of these formats.

	latex

	Build LaTeX sources that can be compiled to a PDF document using
pdflatex.

	man

	Build manual pages in groff format for UNIX systems.

	texinfo

	Build Texinfo files that can be processed into Info files using
makeinfo.

	text

	Build plain text files.

	gettext

	Build gettext-style message catalogs (.pot files).

	doctest

	Run all doctests in the documentation, if the doctest
extension is enabled.

	linkcheck

	Check the integrity of all external links.

See Available builders for a list of all builders shipped with Sphinx.
Extensions can add their own builders.

	
-a

	If given, always write all output files. The default is to only write output
files for new and changed source files. (This may not apply to all
builders.)

	
-E

	Don’t use a saved environment (the structure caching all
cross-references), but rebuild it completely. The default is to only read
and parse source files that are new or have changed since the last run.

	
-t tag

	Define the tag tag. This is relevant for only directives that only
include their content if this tag is set.

New in version 0.6.

	
-d path

	Since Sphinx has to read and parse all source files before it can write an
output file, the parsed source files are cached as “doctree pickles”.
Normally, these files are put in a directory called .doctrees under
the build directory; with this option you can select a different cache
directory (the doctrees can be shared between all builders).

	
-c path

	Don’t look for the conf.py in the source directory, but use the given
configuration directory instead. Note that various other files and paths
given by configuration values are expected to be relative to the
configuration directory, so they will have to be present at this location
too.

New in version 0.3.

	
-C

	Don’t look for a configuration file; only take options via the -D option.

New in version 0.5.

	
-D setting=value

	Override a configuration value set in the conf.py file. The value
must be a string or dictionary value. For the latter, supply the setting
name and key like this: -D latex_elements.docclass=scrartcl. For boolean
values, use 0 or 1 as the value.

Changed in version 0.6: The value can now be a dictionary value.

	
-A name=value

	Make the name assigned to value in the HTML templates.

New in version 0.5.

	
-n

	Run in nit-picky mode. Currently, this generates warnings for all missing
references.

	
-N

	Do not emit colored output. (On Windows, colored output is disabled in any
case.)

	
-q

	Do not output anything on standard output, only write warnings and errors to
standard error.

	
-Q

	Do not output anything on standard output, also suppress warnings. Only
errors are written to standard error.

	
-w file

	Write warnings (and errors) to the given file, in addition to standard error.

	
-W

	Turn warnings into errors. This means that the build stops at the first
warning and sphinx-build exits with exit status 1.

	
-P

	(Useful for debugging only.) Run the Python debugger, pdb, if an
unhandled exception occurs while building.

You can also give one or more filenames on the command line after the source and
build directories. Sphinx will then try to build only these output files (and
their dependencies).

Makefile options

The Makefile and make.bat files created by
sphinx-quickstart usually run sphinx-build only with the
-b and -d options. However, they support the following
variables to customize behavior:

	
PAPER

	The value for latex_paper_size.

	
SPHINXBUILD

	The command to use instead of sphinx-build.

	
BUILDDIR

	The build directory to use instead of the one chosen in
sphinx-quickstart.

	
SPHINXOPTS

	Additional options for sphinx-build.

Invocation of sphinx-apidoc

The sphinx-apidoc generates completely automatic API documentation
for a Python package. It is called like this:

$ sphinx-apidoc [options] -o outputdir packagedir [pathnames]

where packagedir is the path to the package to document, and outputdir is
the directory where the generated sources are placed. Any pathnames given
are paths to be excluded ignored during generation.

The sphinx-apidoc script has several options:

	
-o outputdir

	Gives the directory in which to place the generated output.

	
-f, --force

	Normally, sphinx-apidoc does not overwrite any files. Use this option to
force the overwrite of all files that it generates.

	
-n, --dry-run

	With this option given, no files will be written at all.

	
-s suffix

	This option selects the file name suffix of output files. By default, this
is rst.

	
-d maxdepth

	This sets the maximum depth of the table of contents, if one is generated.

	
-l, --follow-links

	This option makes sphinx-apidoc follow symbolic links when recursing the
filesystem to discover packages and modules. You may need it if you want
to generate documentation from a source directory managed by
collective.recipe.omelette [http://pypi.python.org/pypi/collective.recipe.omelette/].
By default, symbolic links are skipped.

New in version 1.2.

	
-T, --no-toc

	This prevents the generation of a table-of-contents file modules.rst.
This has no effect when --full is given.

	
-F, --full

	This option makes sphinx-apidoc create a full Sphinx project, using the same
mechanism as sphinx-quickstart. Most configuration values are set
to default values, but you can influence the most important ones using the
following options.

	
-H project

	Sets the project name to put in generated files (see project).

	
-A author

	Sets the author name(s) to put in generated files (see copyright).

	
-V version

	Sets the project version to put in generated files (see version).

	
-R release

	Sets the project release to put in generated files (see release).

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 reStructuredText Primer

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

reStructuredText Primer

This section is a brief introduction to reStructuredText (reST) concepts and
syntax, intended to provide authors with enough information to author documents
productively. Since reST was designed to be a simple, unobtrusive markup
language, this will not take too long.

See also

The authoritative reStructuredText User Documentation [http://docutils.sourceforge.net/rst.html]. The “ref” links in this
document link to the description of the individual constructs in the reST
reference.

Paragraphs

The paragraph (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#paragraphs]) is the most basic block in a reST
document. Paragraphs are simply chunks of text separated by one or more blank
lines. As in Python, indentation is significant in reST, so all lines of the
same paragraph must be left-aligned to the same level of indentation.

Inline markup

The standard reST inline markup is quite simple: use

	one asterisk: *text* for emphasis (italics),

	two asterisks: **text** for strong emphasis (boldface), and

	backquotes: ``text`` for code samples.

If asterisks or backquotes appear in running text and could be confused with
inline markup delimiters, they have to be escaped with a backslash.

Be aware of some restrictions of this markup:

	it may not be nested,

	content may not start or end with whitespace: * text* is wrong,

	it must be separated from surrounding text by non-word characters. Use a
backslash escaped space to work around that: thisis\ *one*\ word.

These restrictions may be lifted in future versions of the docutils.

reST also allows for custom “interpreted text roles”’, which signify that the
enclosed text should be interpreted in a specific way. Sphinx uses this to
provide semantic markup and cross-referencing of identifiers, as described in
the appropriate section. The general syntax is :rolename:`content`.

Standard reST provides the following roles:

	emphasis [http://docutils.sourceforge.net/docs/ref/rst/roles.html#emphasis] – alternate spelling for *emphasis*

	strong [http://docutils.sourceforge.net/docs/ref/rst/roles.html#strong] – alternate spelling for **strong**

	literal [http://docutils.sourceforge.net/docs/ref/rst/roles.html#literal] – alternate spelling for ``literal``

	subscript [http://docutils.sourceforge.net/docs/ref/rst/roles.html#subscript] – subscript text

	superscript [http://docutils.sourceforge.net/docs/ref/rst/roles.html#superscript] – superscript text

	title-reference [http://docutils.sourceforge.net/docs/ref/rst/roles.html#title-reference] – for titles of books, periodicals, and other
materials

See Inline markup for roles added by Sphinx.

Lists and Quote-like blocks

List markup (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#bullet-lists]) is natural: just place an asterisk at
the start of a paragraph and indent properly. The same goes for numbered lists;
they can also be autonumbered using a # sign:

* This is a bulleted list.
* It has two items, the second
 item uses two lines.

1. This is a numbered list.
2. It has two items too.

#. This is a numbered list.
#. It has two items too.

Nested lists are possible, but be aware that they must be separated from the
parent list items by blank lines:

* this is
* a list

 * with a nested list
 * and some subitems

* and here the parent list continues

Definition lists (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#definition-lists]) are created as follows:

term (up to a line of text)
 Definition of the term, which must be indented

 and can even consist of multiple paragraphs

next term
 Description.

Note that the term cannot have more than one line of text.

Quoted paragraphs (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#block-quotes]) are created by just indenting
them more than the surrounding paragraphs.

Line blocks (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#line-blocks]) are a way of preserving line breaks:

| These lines are
| broken exactly like in
| the source file.

There are also several more special blocks available:

	field lists (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#field-lists])

	option lists (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#option-lists])

	quoted literal blocks (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#quoted-literal-blocks])

	doctest blocks (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#doctest-blocks])

Source Code

Literal code blocks (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#literal-blocks]) are introduced by ending a
paragraph with the special marker ::. The literal block must be indented
(and, like all paragraphs, separated from the surrounding ones by blank lines):

This is a normal text paragraph. The next paragraph is a code sample::

 It is not processed in any way, except
 that the indentation is removed.

 It can span multiple lines.

This is a normal text paragraph again.

The handling of the :: marker is smart:

	If it occurs as a paragraph of its own, that paragraph is completely left
out of the document.

	If it is preceded by whitespace, the marker is removed.

	If it is preceded by non-whitespace, the marker is replaced by a single
colon.

That way, the second sentence in the above example’s first paragraph would be
rendered as “The next paragraph is a code sample:”.

Tables

Two forms of tables are supported. For grid tables (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#grid-tables]), you have to “paint” the cell grid yourself. They look like
this:

+------------------------+------------+----------+----------+
| Header row, column 1 | Header 2 | Header 3 | Header 4 |
| (header rows optional) | | | |
+========================+============+==========+==========+
| body row 1, column 1 | column 2 | column 3 | column 4 |
+------------------------+------------+----------+----------+
| body row 2 | ... | ... | |
+------------------------+------------+----------+----------+

Simple tables (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#simple-tables]) are easier to write, but
limited: they must contain more than one row, and the first column cannot
contain multiple lines. They look like this:

===== ===== =======
A B A and B
===== ===== =======
False False False
True False False
False True False
True True True
===== ===== =======

Hyperlinks

External links

Use `Link text <http://example.com/>`_ for inline web links. If the link
text should be the web address, you don’t need special markup at all, the parser
finds links and mail addresses in ordinary text.

You can also separate the link and the target definition (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#hyperlink-targets]), like this:

This is a paragraph that contains `a link`_.

.. _a link: http://example.com/

Internal links

Internal linking is done via a special reST role provided by Sphinx, see the
section on specific markup, Cross-referencing arbitrary locations.

Sections

Section headers (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#sections]) are created by underlining (and
optionally overlining) the section title with a punctuation character, at least
as long as the text:

=================
This is a heading
=================

Normally, there are no heading levels assigned to certain characters as the
structure is determined from the succession of headings. However, for the
Python documentation, this convention is used which you may follow:

	# with overline, for parts

	* with overline, for chapters

	=, for sections

	-, for subsections

	^, for subsubsections

	", for paragraphs

Of course, you are free to use your own marker characters (see the reST
documentation), and use a deeper nesting level, but keep in mind that most
target formats (HTML, LaTeX) have a limited supported nesting depth.

Explicit Markup

“Explicit markup” (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#explicit-markup-blocks]) is used in reST for
most constructs that need special handling, such as footnotes,
specially-highlighted paragraphs, comments, and generic directives.

An explicit markup block begins with a line starting with .. followed by
whitespace and is terminated by the next paragraph at the same level of
indentation. (There needs to be a blank line between explicit markup and normal
paragraphs. This may all sound a bit complicated, but it is intuitive enough
when you write it.)

Directives

A directive (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#directives]) is a generic block of explicit markup.
Besides roles, it is one of the extension mechanisms of reST, and Sphinx makes
heavy use of it.

Docutils supports the following directives:

	Admonitions: attention [http://docutils.sourceforge.net/docs/ref/rst/directives.html#attention], caution [http://docutils.sourceforge.net/docs/ref/rst/directives.html#caution], danger [http://docutils.sourceforge.net/docs/ref/rst/directives.html#danger],
error [http://docutils.sourceforge.net/docs/ref/rst/directives.html#error], hint [http://docutils.sourceforge.net/docs/ref/rst/directives.html#hint], important [http://docutils.sourceforge.net/docs/ref/rst/directives.html#important], note [http://docutils.sourceforge.net/docs/ref/rst/directives.html#note],
tip [http://docutils.sourceforge.net/docs/ref/rst/directives.html#tip], warning [http://docutils.sourceforge.net/docs/ref/rst/directives.html#warning] and the generic
admonition [http://docutils.sourceforge.net/docs/ref/rst/directives.html#admonitions]. (Most themes style only “note” and
“warning” specially.)

	Images:

	image [http://docutils.sourceforge.net/docs/ref/rst/directives.html#image] (see also Images below)

	figure [http://docutils.sourceforge.net/docs/ref/rst/directives.html#figure] (an image with caption and optional legend)

	Additional body elements:

	contents [http://docutils.sourceforge.net/docs/ref/rst/directives.html#table-of-contents] (a local, i.e. for the current file
only, table of contents)

	container [http://docutils.sourceforge.net/docs/ref/rst/directives.html#container] (a container with a custom class, useful to generate an
outer <div> in HTML)

	rubric [http://docutils.sourceforge.net/docs/ref/rst/directives.html#rubric] (a heading without relation to the document sectioning)

	topic [http://docutils.sourceforge.net/docs/ref/rst/directives.html#topic], sidebar [http://docutils.sourceforge.net/docs/ref/rst/directives.html#sidebar] (special highlighted body elements)

	parsed-literal [http://docutils.sourceforge.net/docs/ref/rst/directives.html#parsed-literal] (literal block that supports inline markup)

	epigraph [http://docutils.sourceforge.net/docs/ref/rst/directives.html#epigraph] (a block quote with optional attribution line)

	highlights [http://docutils.sourceforge.net/docs/ref/rst/directives.html#highlights], pull-quote [http://docutils.sourceforge.net/docs/ref/rst/directives.html#pull-quote] (block quotes with their own
class attribute)

	compound [http://docutils.sourceforge.net/docs/ref/rst/directives.html#compound-paragraph] (a compound paragraph)

	Special tables:

	table [http://docutils.sourceforge.net/docs/ref/rst/directives.html#table] (a table with title)

	csv-table [http://docutils.sourceforge.net/docs/ref/rst/directives.html#csv-table] (a table generated from comma-separated values)

	list-table [http://docutils.sourceforge.net/docs/ref/rst/directives.html#list-table] (a table generated from a list of lists)

	Special directives:

	raw [http://docutils.sourceforge.net/docs/ref/rst/directives.html#raw-data-pass-through] (include raw target-format markup)

	include [http://docutils.sourceforge.net/docs/ref/rst/directives.html#include] (include reStructuredText from another file)
– in Sphinx, when given an absolute include file path, this directive takes
it as relative to the source directory

	class [http://docutils.sourceforge.net/docs/ref/rst/directives.html#class] (assign a class attribute to the next element) [1]

	HTML specifics:

	meta [http://docutils.sourceforge.net/docs/ref/rst/directives.html#meta] (generation of HTML <meta> tags)

	title [http://docutils.sourceforge.net/docs/ref/rst/directives.html#metadata-document-title] (override document title)

	Influencing markup:

	default-role [http://docutils.sourceforge.net/docs/ref/rst/directives.html#default-role] (set a new default role)

	role [http://docutils.sourceforge.net/docs/ref/rst/directives.html#role] (create a new role)

Since these are only per-file, better use Sphinx’ facilities for setting the
default_role.

Do not use the directives sectnum [http://docutils.sourceforge.net/docs/ref/rst/directives.html#sectnum], header [http://docutils.sourceforge.net/docs/ref/rst/directives.html#header] and
footer [http://docutils.sourceforge.net/docs/ref/rst/directives.html#footer].

Directives added by Sphinx are described in Sphinx Markup Constructs.

Basically, a directive consists of a name, arguments, options and content. (Keep
this terminology in mind, it is used in the next chapter describing custom
directives.) Looking at this example,

.. function:: foo(x)
 foo(y, z)
 :module: some.module.name

 Return a line of text input from the user.

function is the directive name. It is given two arguments here, the
remainder of the first line and the second line, as well as one option
module (as you can see, options are given in the lines immediately following
the arguments and indicated by the colons). Options must be indented to the
same level as the directive content.

The directive content follows after a blank line and is indented relative to the
directive start.

Images

reST supports an image directive (ref [http://docutils.sourceforge.net/docs/ref/rst/directives.html#image]), used like so:

.. image:: gnu.png
 (options)

When used within Sphinx, the file name given (here gnu.png) must either be
relative to the source file, or absolute which means that they are relative to
the top source directory. For example, the file sketch/spam.rst could refer
to the image images/spam.png as ../images/spam.png or
/images/spam.png.

Sphinx will automatically copy image files over to a subdirectory of the output
directory on building (e.g. the _static directory for HTML output.)

Interpretation of image size options (width and height) is as follows:
if the size has no unit or the unit is pixels, the given size will only be
respected for output channels that support pixels (i.e. not in LaTeX output).
Other units (like pt for points) will be used for HTML and LaTeX output.

Sphinx extends the standard docutils behavior by allowing an asterisk for the
extension:

.. image:: gnu.*

Sphinx then searches for all images matching the provided pattern and determines
their type. Each builder then chooses the best image out of these candidates.
For instance, if the file name gnu.* was given and two files gnu.pdf
and gnu.png existed in the source tree, the LaTeX builder would choose
the former, while the HTML builder would prefer the latter.

Changed in version 0.4: Added the support for file names ending in an asterisk.

Changed in version 0.6: Image paths can now be absolute.

Footnotes

For footnotes (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#footnotes]), use [#name]_ to mark the footnote
location, and add the footnote body at the bottom of the document after a
“Footnotes” rubric heading, like so:

Lorem ipsum [#f1]_ dolor sit amet ... [#f2]_

.. rubric:: Footnotes

.. [#f1] Text of the first footnote.
.. [#f2] Text of the second footnote.

You can also explicitly number the footnotes ([1]_) or use auto-numbered
footnotes without names ([#]_).

Citations

Standard reST citations (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#citations]) are supported, with the
additional feature that they are “global”, i.e. all citations can be referenced
from all files. Use them like so:

Lorem ipsum [Ref]_ dolor sit amet.

.. [Ref] Book or article reference, URL or whatever.

Citation usage is similar to footnote usage, but with a label that is not
numeric or begins with #.

Substitutions

reST supports “substitutions” (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions]), which
are pieces of text and/or markup referred to in the text by |name|. They
are defined like footnotes with explicit markup blocks, like this:

.. |name| replace:: replacement *text*

or this:

.. |caution| image:: warning.png
 :alt: Warning!

See the reST reference for substitutions [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions]
for details.

If you want to use some substitutions for all documents, put them into
rst_prolog or put them into a separate file and include it into all
documents you want to use them in, using the include directive. (Be
sure to give the include file a file name extension differing from that of other
source files, to avoid Sphinx finding it as a standalone document.)

Sphinx defines some default substitutions, see Substitutions.

Comments

Every explicit markup block which isn’t a valid markup construct (like the
footnotes above) is regarded as a comment (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#comments]). For
example:

.. This is a comment.

You can indent text after a comment start to form multiline comments:

..
 This whole indented block
 is a comment.

 Still in the comment.

Source encoding

Since the easiest way to include special characters like em dashes or copyright
signs in reST is to directly write them as Unicode characters, one has to
specify an encoding. Sphinx assumes source files to be encoded in UTF-8 by
default; you can change this with the source_encoding config value.

Gotchas

There are some problems one commonly runs into while authoring reST documents:

	Separation of inline markup: As said above, inline markup spans must be
separated from the surrounding text by non-word characters, you have to use a
backslash-escaped space to get around that. See
the reference [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions] for the details.

	No nested inline markup: Something like *see :func:`foo`* is not
possible.

Footnotes

	[1]	When the default domain contains a class directive, this directive
will be shadowed. Therefore, Sphinx re-exports it as rst-class.

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 Sphinx Markup Constructs

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

Sphinx Markup Constructs

Sphinx adds a lot of new directives and interpreted text roles to standard reST
markup [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html]. This section contains the reference material for these facilities.

	The TOC tree
	Special names

	Paragraph-level markup

	Table-of-contents markup

	Glossary

	Grammar production displays

	Showing code examples
	Line numbers

	Includes

	Inline markup
	Cross-referencing syntax
	Cross-referencing objects

	Cross-referencing arbitrary locations

	Cross-referencing documents

	Referencing downloadable files

	Cross-referencing other items of interest

	Other semantic markup

	Substitutions

	Miscellaneous markup
	File-wide metadata

	Meta-information markup

	Index-generating markup

	Including content based on tags

	Tables

More markup is added by Sphinx Domains.

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 The TOC tree

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

 	Sphinx Markup Constructs

The TOC tree

Since reST does not have facilities to interconnect several documents, or split
documents into multiple output files, Sphinx uses a custom directive to add
relations between the single files the documentation is made of, as well as
tables of contents. The toctree directive is the central element.

Note

Simple “inclusion” of one file in another can be done with the
include [http://docutils.sourceforge.net/docs/ref/rst/directives.html#include] directive.

	
.. toctree::

	This directive inserts a “TOC tree” at the current location, using the
individual TOCs (including “sub-TOC trees”) of the documents given in the
directive body. Relative document names (not beginning with a slash) are
relative to the document the directive occurs in, absolute names are relative
to the source directory. A numeric maxdepth option may be given to
indicate the depth of the tree; by default, all levels are included. [1]

Consider this example (taken from the Python docs’ library reference index):

.. toctree::
 :maxdepth: 2

 intro
 strings
 datatypes
 numeric
 (many more documents listed here)

This accomplishes two things:

	Tables of contents from all those documents are inserted, with a maximum
depth of two, that means one nested heading. toctree directives in
those documents are also taken into account.

	Sphinx knows that the relative order of the documents intro,
strings and so forth, and it knows that they are children of the shown
document, the library index. From this information it generates “next
chapter”, “previous chapter” and “parent chapter” links.

Entries

Document titles in the toctree will be automatically read from the
title of the referenced document. If that isn’t what you want, you can
specify an explicit title and target using a similar syntax to reST
hyperlinks (and Sphinx’s cross-referencing syntax). This
looks like:

.. toctree::

 intro
 All about strings <strings>
 datatypes

The second line above will link to the strings document, but will use the
title “All about strings” instead of the title of the strings document.

You can also add external links, by giving an HTTP URL instead of a document
name.

Section numbering

If you want to have section numbers even in HTML output, give the toctree a
numbered option. For example:

.. toctree::
 :numbered:

 foo
 bar

Numbering then starts at the heading of foo. Sub-toctrees are
automatically numbered (don’t give the numbered flag to those).

Numbering up to a specific depth is also possible, by giving the depth as a
numeric argument to numbered.

Additional options

If you want only the titles of documents in the tree to show up, not other
headings of the same level, you can use the titlesonly option:

.. toctree::
 :titlesonly:

 foo
 bar

You can use “globbing” in toctree directives, by giving the glob flag
option. All entries are then matched against the list of available
documents, and matches are inserted into the list alphabetically. Example:

.. toctree::
 :glob:

 intro*
 recipe/*
 *

This includes first all documents whose names start with intro, then all
documents in the recipe folder, then all remaining documents (except the
one containing the directive, of course.) [2]

The special entry name self stands for the document containing the
toctree directive. This is useful if you want to generate a “sitemap” from
the toctree.

You can also give a “hidden” option to the directive, like this:

.. toctree::
 :hidden:

 doc_1
 doc_2

This will still notify Sphinx of the document hierarchy, but not insert links
into the document at the location of the directive – this makes sense if you
intend to insert these links yourself, in a different style, or in the HTML
sidebar.

In the end, all documents in the source directory (or subdirectories)
must occur in some toctree directive; Sphinx will emit a warning if it
finds a file that is not included, because that means that this file will not
be reachable through standard navigation. Use unused_docs to
explicitly exclude documents from building, and exclude_trees to
exclude whole directories.

The “master document” (selected by master_doc) is the “root” of
the TOC tree hierarchy. It can be used as the documentation’s main page, or
as a “full table of contents” if you don’t give a maxdepth option.

Changed in version 0.3: Added “globbing” option.

Changed in version 0.6: Added “numbered” and “hidden” options as well as external links and
support for “self” references.

Changed in version 1.0: Added “titlesonly” option.

Changed in version 1.1: Added numeric argument to “numbered”.

Special names

Sphinx reserves some document names for its own use; you should not try to
create documents with these names – it will cause problems.

The special document names (and pages generated for them) are:

	genindex, modindex, search

These are used for the general index, the Python module index, and the search
page, respectively.

The general index is populated with entries from modules, all index-generating
object descriptions, and from index
directives.

The Python module index contains one entry per py:module directive.

The search page contains a form that uses the generated JSON search index and
JavaScript to full-text search the generated documents for search words; it
should work on every major browser that supports modern JavaScript.

	every name beginning with _

Though only few such names are currently used by Sphinx, you should not create
documents or document-containing directories with such names. (Using _ as
a prefix for a custom template directory is fine.)

Footnotes

	[1]	The maxdepth option does not apply to the LaTeX writer, where the
whole table of contents will always be presented at the begin of the
document, and its depth is controlled by the tocdepth counter, which
you can reset in your latex_preamble config value using
e.g. \setcounter{tocdepth}{2}.

	[2]	A note on available globbing syntax: you can use the standard shell
constructs *, ?, [...] and [!...] with the feature that
these all don’t match slashes. A double star ** can be used to match
any sequence of characters including slashes.

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 Paragraph-level markup

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

 	Sphinx Markup Constructs

Paragraph-level markup

These directives create short paragraphs and can be used inside information
units as well as normal text:

	
.. note::

	An especially important bit of information about an API that a user should be
aware of when using whatever bit of API the note pertains to. The content of
the directive should be written in complete sentences and include all
appropriate punctuation.

Example:

.. note::

 This function is not suitable for sending spam e-mails.

	
.. warning::

	An important bit of information about an API that a user should be very aware
of when using whatever bit of API the warning pertains to. The content of
the directive should be written in complete sentences and include all
appropriate punctuation. This differs from note in that it is
recommended over note for information regarding security.

	
.. versionadded:: version

	This directive documents the version of the project which added the described
feature to the library or C API. When this applies to an entire module, it
should be placed at the top of the module section before any prose.

The first argument must be given and is the version in question; you can add
a second argument consisting of a brief explanation of the change.

Example:

.. versionadded:: 2.5
 The *spam* parameter.

Note that there must be no blank line between the directive head and the
explanation; this is to make these blocks visually continuous in the markup.

	
.. versionchanged:: version

	Similar to versionadded, but describes when and what changed in
the named feature in some way (new parameters, changed side effects, etc.).

	
.. deprecated:: version

	Similar to versionchanged, but describes when the feature was
deprecated. An explanation can also be given, for example to inform the
reader what should be used instead. Example:

.. deprecated:: 3.1
 Use :func:`spam` instead.

	
.. seealso::

	Many sections include a list of references to module documentation or
external documents. These lists are created using the seealso
directive.

The seealso directive is typically placed in a section just before any
sub-sections. For the HTML output, it is shown boxed off from the main flow
of the text.

The content of the seealso directive should be a reST definition list.
Example:

.. seealso::

 Module :py:mod:`zipfile`
 Documentation of the :py:mod:`zipfile` standard module.

 `GNU tar manual, Basic Tar Format <http://link>`_
 Documentation for tar archive files, including GNU tar extensions.

There’s also a “short form” allowed that looks like this:

.. seealso:: modules :py:mod:`zipfile`, :py:mod:`tarfile`

New in version 0.5: The short form.

	
.. rubric:: title

	This directive creates a paragraph heading that is not used to create a
table of contents node.

Note

If the title of the rubric is “Footnotes” (or the selected language’s
equivalent), this rubric is ignored by the LaTeX writer, since it is
assumed to only contain footnote definitions and therefore would create an
empty heading.

	
.. centered::

	This directive creates a centered boldfaced line of text. Use it as
follows:

.. centered:: LICENSE AGREEMENT

Deprecated since version 1.1: This presentation-only directive is a legacy from older versions. Use a
rst-class directive instead and add an appropriate style.

	
.. hlist::

	This directive must contain a bullet list. It will transform it into a more
compact list by either distributing more than one item horizontally, or
reducing spacing between items, depending on the builder.

For builders that support the horizontal distribution, there is a columns
option that specifies the number of columns; it defaults to 2. Example:

.. hlist::
 :columns: 3

 * A list of
 * short items
 * that should be
 * displayed
 * horizontally

New in version 0.6.

Table-of-contents markup

The toctree directive, which generates tables of contents of
subdocuments, is described in The TOC tree.

For local tables of contents, use the standard reST contents directive [http://docutils.sourceforge.net/docs/ref/rst/directives.html#table-of-contents].

Glossary

	
.. glossary::

	This directive must contain a reST definition-list-like markup with terms and
definitions. The definitions will then be referencable with the
term role. Example:

.. glossary::

 environment
 A structure where information about all documents under the root is
 saved, and used for cross-referencing. The environment is pickled
 after the parsing stage, so that successive runs only need to read
 and parse new and changed documents.

 source directory
 The directory which, including its subdirectories, contains all
 source files for one Sphinx project.

In contrast to regular definition lists, multiple terms per entry are
allowed, and inline markup is allowed in terms. You can link to all of the
terms. For example:

.. glossary::

 term 1
 term 2
 Definition of both terms.

(When the glossary is sorted, the first term determines the sort order.)

New in version 0.6: You can now give the glossary directive a :sorted: flag that will
automatically sort the entries alphabetically.

Changed in version 1.1: Now supports multiple terms and inline markup in terms.

Grammar production displays

Special markup is available for displaying the productions of a formal grammar.
The markup is simple and does not attempt to model all aspects of BNF (or any
derived forms), but provides enough to allow context-free grammars to be
displayed in a way that causes uses of a symbol to be rendered as hyperlinks to
the definition of the symbol. There is this directive:

	
.. productionlist:: [name]

	This directive is used to enclose a group of productions. Each production is
given on a single line and consists of a name, separated by a colon from the
following definition. If the definition spans multiple lines, each
continuation line must begin with a colon placed at the same column as in the
first line.

The argument to productionlist serves to distinguish different sets of
production lists that belong to different grammars.

Blank lines are not allowed within productionlist directive arguments.

The definition can contain token names which are marked as interpreted text
(e.g. sum ::= `integer` "+" `integer`) – this generates cross-references
to the productions of these tokens. Outside of the production list, you can
reference to token productions using token.

Note that no further reST parsing is done in the production, so that you
don’t have to escape * or | characters.

The following is an example taken from the Python Reference Manual:

.. productionlist::
 try_stmt: try1_stmt | try2_stmt
 try1_stmt: "try" ":" `suite`
 : ("except" [`expression` ["," `target`]] ":" `suite`)+
 : ["else" ":" `suite`]
 : ["finally" ":" `suite`]
 try2_stmt: "try" ":" `suite`
 : "finally" ":" `suite`

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 Showing code examples

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

 	Sphinx Markup Constructs

Showing code examples

Examples of Python source code or interactive sessions are represented using
standard reST literal blocks. They are started by a :: at the end of the
preceding paragraph and delimited by indentation.

Representing an interactive session requires including the prompts and output
along with the Python code. No special markup is required for interactive
sessions. After the last line of input or output presented, there should not be
an “unused” primary prompt; this is an example of what not to do:

>>> 1 + 1
2
>>>

Syntax highlighting is done with Pygments [http://pygments.org] (if it’s
installed) and handled in a smart way:

	There is a “highlighting language” for each source file. Per default, this is
'python' as the majority of files will have to highlight Python snippets,
but the doc-wide default can be set with the highlight_language
config value.

	Within Python highlighting mode, interactive sessions are recognized
automatically and highlighted appropriately. Normal Python code is only
highlighted if it is parseable (so you can use Python as the default, but
interspersed snippets of shell commands or other code blocks will not be
highlighted as Python).

	The highlighting language can be changed using the highlight directive,
used as follows:

.. highlight:: c

This language is used until the next highlight directive is encountered.

	For documents that have to show snippets in different languages, there’s also
a code-block directive that is given the highlighting language
directly:

.. code-block:: ruby

 Some Ruby code.

The directive’s alias name sourcecode works as well.

	The valid values for the highlighting language are:

	none (no highlighting)

	python (the default when highlight_language isn’t set)

	guess (let Pygments guess the lexer based on contents, only works with
certain well-recognizable languages)

	rest

	c

	... and any other lexer name that Pygments supports.

	If highlighting with the selected language fails, the block is not highlighted
in any way.

Line numbers

If installed, Pygments can generate line numbers for code blocks. For
automatically-highlighted blocks (those started by ::), line numbers must be
switched on in a highlight directive, with the linenothreshold
option:

.. highlight:: python
 :linenothreshold: 5

This will produce line numbers for all code blocks longer than five lines.

For code-block blocks, a linenos flag option can be given to switch
on line numbers for the individual block:

.. code-block:: ruby
 :linenos:

 Some more Ruby code.

Additionally, an emphasize-lines option can be given to have Pygments
emphasize particular lines:

.. code-block:: python
 :emphasize-lines: 3,5

 def some_function():
 interesting = False
 print 'This line is highlighted.'
 print 'This one is not...'
 print '...but this one is.'

Changed in version 1.1: emphasize-lines has been added.

Includes

	
.. literalinclude:: filename

	Longer displays of verbatim text may be included by storing the example text in
an external file containing only plain text. The file may be included using the
literalinclude directive. [1] For example, to include the Python source file
example.py, use:

.. literalinclude:: example.py

The file name is usually relative to the current file’s path. However, if it
is absolute (starting with /), it is relative to the top source
directory.

Tabs in the input are expanded if you give a tab-width option with the
desired tab width.

The directive also supports the linenos flag option to switch on line
numbers, the emphasize-lines option to emphasize particular lines, and
a language option to select a language different from the current
file’s standard language. Example with options:

.. literalinclude:: example.rb
 :language: ruby
 :emphasize-lines: 12,15-18
 :linenos:

Include files are assumed to be encoded in the source_encoding.
If the file has a different encoding, you can specify it with the
encoding option:

.. literalinclude:: example.py
 :encoding: latin-1

The directive also supports including only parts of the file. If it is a
Python module, you can select a class, function or method to include using
the pyobject option:

.. literalinclude:: example.py
 :pyobject: Timer.start

This would only include the code lines belonging to the start() method in
the Timer class within the file.

Alternately, you can specify exactly which lines to include by giving a
lines option:

.. literalinclude:: example.py
 :lines: 1,3,5-10,20-

This includes the lines 1, 3, 5 to 10 and lines 20 to the last line.

Another way to control which part of the file is included is to use the
start-after and end-before options (or only one of them). If
start-after is given as a string option, only lines that follow the first
line containing that string are included. If end-before is given as a
string option, only lines that precede the first lines containing that string
are included.

You can prepend and/or append a line to the included code, using the
prepend and append option, respectively. This is useful e.g. for
highlighting PHP code that doesn’t include the <?php/?> markers.

New in version 0.4.3: The encoding option.

New in version 0.6: The pyobject, lines, start-after and end-before options,
as well as support for absolute filenames.

New in version 1.0: The prepend and append options, as well as tab-width.

Footnotes

	[1]	There is a standard .. include directive, but it raises errors if the
file is not found. This one only emits a warning.

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 Inline markup

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

 	Sphinx Markup Constructs

Inline markup

Sphinx uses interpreted text roles to insert semantic markup into documents.
They are written as :rolename:`content`.

Note

The default role (`content`) has no special meaning by default. You are
free to use it for anything you like, e.g. variable names; use the
default_role config value to set it to a known role.

See Sphinx Domains for roles added by domains.

Cross-referencing syntax

Cross-references are generated by many semantic interpreted text roles.
Basically, you only need to write :role:`target`, and a link will be created
to the item named target of the type indicated by role. The links’s text
will be the same as target.

There are some additional facilities, however, that make cross-referencing roles
more versatile:

	You may supply an explicit title and reference target, like in reST direct
hyperlinks: :role:`title <target>` will refer to target, but the link
text will be title.

	If you prefix the content with !, no reference/hyperlink will be created.

	If you prefix the content with ~, the link text will only be the last
component of the target. For example, :py:meth:`~Queue.Queue.get` will
refer to Queue.Queue.get but only display get as the link text.

In HTML output, the link’s title attribute (that is e.g. shown as a
tool-tip on mouse-hover) will always be the full target name.

Cross-referencing objects

These roles are described with their respective domains:

	Python

	C

	C++

	JavaScript

	ReST

Cross-referencing arbitrary locations

	
:ref:

	To support cross-referencing to arbitrary locations in any document, the
standard reST labels are used. For this to work label names must be unique
throughout the entire documentation. There are two ways in which you can
refer to labels:

	If you place a label directly before a section title, you can reference to
it with :ref:`label-name`. Example:

.. _my-reference-label:

Section to cross-reference

This is the text of the section.

It refers to the section itself, see :ref:`my-reference-label`.

The :ref: role would then generate a link to the section, with the link
title being “Section to cross-reference”. This works just as well when
section and reference are in different source files.

Automatic labels also work with figures: given

.. _my-figure:

.. figure:: whatever

 Figure caption

a reference :ref:`my-figure` would insert a reference to the figure
with link text “Figure caption”.

The same works for tables that are given an explicit caption using the
table [http://docutils.sourceforge.net/docs/ref/rst/directives.html#table] directive.

	Labels that aren’t placed before a section title can still be referenced
to, but you must give the link an explicit title, using this syntax:
:ref:`Link title <label-name>`.

Using ref is advised over standard reStructuredText links to sections
(like `Section title`_) because it works across files, when section
headings are changed, and for all builders that support cross-references.

Cross-referencing documents

New in version 0.6.

There is also a way to directly link to documents:

	
:doc:

	Link to the specified document; the document name can be specified in
absolute or relative fashion. For example, if the reference
:doc:`parrot` occurs in the document sketches/index, then the link
refers to sketches/parrot. If the reference is :doc:`/people` or
:doc:`../people`, the link refers to people.

If no explicit link text is given (like usual: :doc:`Monty Python members
</people>`), the link caption will be the title of the given document.

Referencing downloadable files

New in version 0.6.

	
:download:

	This role lets you link to files within your source tree that are not reST
documents that can be viewed, but files that can be downloaded.

When you use this role, the referenced file is automatically marked for
inclusion in the output when building (obviously, for HTML output only).
All downloadable files are put into the _downloads subdirectory of the
output directory; duplicate filenames are handled.

An example:

See :download:`this example script <../example.py>`.

The given filename is usually relative to the directory the current source
file is contained in, but if it absolute (starting with /), it is taken
as relative to the top source directory.

The example.py file will be copied to the output directory, and a
suitable link generated to it.

Cross-referencing other items of interest

The following roles do possibly create a cross-reference, but do not refer to
objects:

	
:envvar:

	An environment variable. Index entries are generated. Also generates a link
to the matching envvar directive, if it exists.

	
:token:

	The name of a grammar token (used to create links between
productionlist directives).

	
:keyword:

	The name of a keyword in Python. This creates a link to a reference label
with that name, if it exists.

	
:option:

	A command-line option to an executable program. The leading hyphen(s) must
be included. This generates a link to a option directive, if it
exists.

The following role creates a cross-reference to the term in the glossary:

	
:term:

	Reference to a term in the glossary. The glossary is created using the
glossary directive containing a definition list with terms and
definitions. It does not have to be in the same file as the term markup,
for example the Python docs have one global glossary in the glossary.rst
file.

If you use a term that’s not explained in a glossary, you’ll get a warning
during build.

Other semantic markup

The following roles don’t do anything special except formatting the text
in a different style:

	
:abbr:

	An abbreviation. If the role content contains a parenthesized explanation,
it will be treated specially: it will be shown in a tool-tip in HTML, and
output only once in LaTeX.

Example: :abbr:`LIFO (last-in, first-out)`.

New in version 0.6.

	
:command:

	The name of an OS-level command, such as rm.

	
:dfn:

	Mark the defining instance of a term in the text. (No index entries are
generated.)

	
:file:

	The name of a file or directory. Within the contents, you can use curly
braces to indicate a “variable” part, for example:

... is installed in :file:`/usr/lib/python2.{x}/site-packages` ...

In the built documentation, the x will be displayed differently to
indicate that it is to be replaced by the Python minor version.

	
:guilabel:

	Labels presented as part of an interactive user interface should be marked
using guilabel. This includes labels from text-based interfaces such as
those created using curses or other text-based libraries. Any label
used in the interface should be marked with this role, including button
labels, window titles, field names, menu and menu selection names, and even
values in selection lists.

Changed in version 1.0: An accelerator key for the GUI label can be included using an ampersand;
this will be stripped and displayed underlined in the output (example:
:guilabel:`&Cancel`). To include a literal ampersand, double it.

	
:kbd:

	Mark a sequence of keystrokes. What form the key sequence takes may depend
on platform- or application-specific conventions. When there are no relevant
conventions, the names of modifier keys should be spelled out, to improve
accessibility for new users and non-native speakers. For example, an
xemacs key sequence may be marked like :kbd:`C-x C-f`, but without
reference to a specific application or platform, the same sequence should be
marked as :kbd:`Control-x Control-f`.

	
:mailheader:

	The name of an RFC 822-style mail header. This markup does not imply that
the header is being used in an email message, but can be used to refer to any
header of the same “style.” This is also used for headers defined by the
various MIME specifications. The header name should be entered in the same
way it would normally be found in practice, with the camel-casing conventions
being preferred where there is more than one common usage. For example:
:mailheader:`Content-Type`.

	
:makevar:

	The name of a make variable.

	
:manpage:

	A reference to a Unix manual page including the section,
e.g. :manpage:`ls(1)`.

	
:menuselection:

	Menu selections should be marked using the menuselection role. This is
used to mark a complete sequence of menu selections, including selecting
submenus and choosing a specific operation, or any subsequence of such a
sequence. The names of individual selections should be separated by
-->.

For example, to mark the selection “Start > Programs”, use this markup:

:menuselection:`Start --> Programs`

When including a selection that includes some trailing indicator, such as the
ellipsis some operating systems use to indicate that the command opens a
dialog, the indicator should be omitted from the selection name.

menuselection also supports ampersand accelerators just like
guilabel.

	
:mimetype:

	The name of a MIME type, or a component of a MIME type (the major or minor
portion, taken alone).

	
:newsgroup:

	The name of a Usenet newsgroup.

	
:program:

	The name of an executable program. This may differ from the file name for
the executable for some platforms. In particular, the .exe (or other)
extension should be omitted for Windows programs.

	
:regexp:

	A regular expression. Quotes should not be included.

	
:samp:

	A piece of literal text, such as code. Within the contents, you can use
curly braces to indicate a “variable” part, as in file. For
example, in :samp:`print 1+{variable}`, the part variable would be
emphasized.

If you don’t need the “variable part” indication, use the standard
``code`` instead.

There is also an index role to generate index entries.

The following roles generate external links:

	
:pep:

	A reference to a Python Enhancement Proposal. This generates appropriate
index entries. The text “PEP number” is generated; in the HTML output,
this text is a hyperlink to an online copy of the specified PEP. You can
link to a specific section by saying :pep:`number#anchor`.

	
:rfc:

	A reference to an Internet Request for Comments. This generates appropriate
index entries. The text “RFC number” is generated; in the HTML output,
this text is a hyperlink to an online copy of the specified RFC. You can
link to a specific section by saying :rfc:`number#anchor`.

Note that there are no special roles for including hyperlinks as you can use
the standard reST markup for that purpose.

Substitutions

The documentation system provides three substitutions that are defined by default.
They are set in the build configuration file.

	
|release|

	Replaced by the project release the documentation refers to. This is meant
to be the full version string including alpha/beta/release candidate tags,
e.g. 2.5.2b3. Set by release.

	
|version|

	Replaced by the project version the documentation refers to. This is meant to
consist only of the major and minor version parts, e.g. 2.5, even for
version 2.5.1. Set by version.

	
|today|

	Replaced by either today’s date (the date on which the document is read), or
the date set in the build configuration file. Normally has the format
April 14, 2007. Set by today_fmt and today.

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 Miscellaneous markup

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

 	Sphinx Markup Constructs

Miscellaneous markup

File-wide metadata

reST has the concept of “field lists”; these are a sequence of fields marked up
like this:

:fieldname: Field content

A field list near the top of a file is parsed by docutils as the “docinfo”
which is normally used to record the author, date of publication and other
metadata. In Sphinx, a field list preceding any other markup is moved from
the docinfo to the Sphinx environment as document metadata and is not displayed
in the output; a field list appearing after the document title will be part of
the docinfo as normal and will be displayed in the output.

At the moment, these metadata fields are recognized:

	tocdepth

	The maximum depth for a table of contents of this file.

New in version 0.4.

	nocomments

	If set, the web application won’t display a comment form for a page generated
from this source file.

	orphan

	If set, warnings about this file not being included in any toctree will be
suppressed.

New in version 1.0.

Meta-information markup

	
.. sectionauthor:: name <email>

	Identifies the author of the current section. The argument should include
the author’s name such that it can be used for presentation and email
address. The domain name portion of the address should be lower case.
Example:

.. sectionauthor:: Guido van Rossum <guido@python.org>

By default, this markup isn’t reflected in the output in any way (it helps
keep track of contributions), but you can set the configuration value
show_authors to True to make them produce a paragraph in the
output.

	
.. codeauthor:: name <email>

	The codeauthor directive, which can appear multiple times, names the
authors of the described code, just like sectionauthor names the
author(s) of a piece of documentation. It too only produces output if the
show_authors configuration value is True.

Index-generating markup

Sphinx automatically creates index entries from all object descriptions (like
functions, classes or attributes) like discussed in Sphinx Domains.

However, there is also explicit markup available, to make the index more
comprehensive and enable index entries in documents where information is not
mainly contained in information units, such as the language reference.

	
.. index:: <entries>

	This directive contains one or more index entries. Each entry consists of a
type and a value, separated by a colon.

For example:

.. index::
 single: execution; context
 module: __main__
 module: sys
 triple: module; search; path

The execution context

...

This directive contains five entries, which will be converted to entries in
the generated index which link to the exact location of the index statement
(or, in case of offline media, the corresponding page number).

Since index directives generate cross-reference targets at their location in
the source, it makes sense to put them before the thing they refer to –
e.g. a heading, as in the example above.

The possible entry types are:

	single

	Creates a single index entry. Can be made a subentry by separating the
subentry text with a semicolon (this notation is also used below to
describe what entries are created).

	pair

	pair: loop; statement is a shortcut that creates two index entries,
namely loop; statement and statement; loop.

	triple

	Likewise, triple: module; search; path is a shortcut that creates
three index entries, which are module; search path, search; path,
module and path; module search.

	see

	see: entry; other creates an index entry that refers from entry to
other.

	seealso

	Like see, but inserts “see also” instead of “see”.

	module, keyword, operator, object, exception, statement, builtin

	These all create two index entries. For example, module: hashlib
creates the entries module; hashlib and hashlib; module. (These
are Python-specific and therefore deprecated.)

You can mark up “main” index entries by prefixing them with an exclamation
mark. The references to “main” entries are emphasized in the generated
index. For example, if two pages contain

.. index:: Python

and one page contains

.. index:: ! Python

then the backlink to the latter page is emphasized among the three backlinks.

For index directives containing only “single” entries, there is a shorthand
notation:

.. index:: BNF, grammar, syntax, notation

This creates four index entries.

Changed in version 1.1: Added see and seealso types, as well as marking main entries.

	
:index:

	While the index directive is a block-level markup and links to the
beginning of the next paragraph, there is also a corresponding role that sets
the link target directly where it is used.

The content of the role can be a simple phrase, which is then kept in the
text and used as an index entry. It can also be a combination of text and
index entry, styled like with explicit targets of cross-references. In that
case, the “target” part can be a full entry as described for the directive
above. For example:

This is a normal reST :index:`paragraph` that contains several
:index:`index entries <pair: index; entry>`.

New in version 1.1.

Including content based on tags

	
.. only:: <expression>

	Include the content of the directive only if the expression is true. The
expression should consist of tags, like this:

.. only:: html and draft

Undefined tags are false, defined tags (via the -t command-line option or
within conf.py) are true. Boolean expressions, also using
parentheses (like html and (latex or draft)) are supported.

The format of the current builder (html, latex or text) is always
set as a tag.

New in version 0.6.

Tables

Use standard reStructuredText tables. They work fine in
HTML output, however there are some gotchas when using tables in LaTeX: the
column width is hard to determine correctly automatically. For this reason, the
following directive exists:

	
.. tabularcolumns:: column spec

	This directive gives a “column spec” for the next table occurring in the
source file. The spec is the second argument to the LaTeX tabulary
package’s environment (which Sphinx uses to translate tables). It can have
values like

|l|l|l|

which means three left-adjusted, nonbreaking columns. For columns with
longer text that should automatically be broken, use either the standard
p{width} construct, or tabulary’s automatic specifiers:

	L
	ragged-left column with automatic width

	R
	ragged-right column with automatic width

	C
	centered column with automatic width

	J
	justified column with automatic width

The automatic width is determined by rendering the content in the table, and
scaling them according to their share of the total width.

By default, Sphinx uses a table layout with L for every column.

New in version 0.3.

Warning

Tables that contain list-like elements such as object descriptions,
blockquotes or any kind of lists cannot be set out of the box with
tabulary. They are therefore set with the standard LaTeX tabular
environment if you don’t give a tabularcolumns directive. If you do, the
table will be set with tabulary, but you must use the p{width}
construct for the columns that contain these elements.

Literal blocks do not work with tabulary at all, so tables containing a
literal block are always set with tabular. Also, the verbatim
environment used for literal blocks only works in p{width} columns, which
means that by default, Sphinx generates such column specs for such tables.
Use the tabularcolumns directive to get finer control over such
tables.

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 Sphinx Domains

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

Sphinx Domains

New in version 1.0.

What is a Domain?

Originally, Sphinx was conceived for a single project, the documentation of the
Python language. Shortly afterwards, it was made available for everyone as a
documentation tool, but the documentation of Python modules remained deeply
built in – the most fundamental directives, like function, were designed
for Python objects. Since Sphinx has become somewhat popular, interest
developed in using it for many different purposes: C/C++ projects, JavaScript,
or even reStructuredText markup (like in this documentation).

While this was always possible, it is now much easier to easily support
documentation of projects using different programming languages or even ones not
supported by the main Sphinx distribution, by providing a domain for every
such purpose.

A domain is a collection of markup (reStructuredText directives and
roles) to describe and link to objects belonging together,
e.g. elements of a programming language. Directive and role names in a domain
have names like domain:name, e.g. py:function. Domains can also provide
custom indices (like the Python Module Index).

Having domains means that there are no naming problems when one set of
documentation wants to refer to e.g. C++ and Python classes. It also means that
extensions that support the documentation of whole new languages are much easier
to write.

This section describes what the domains that come with Sphinx provide. The
domain API is documented as well, in the section Domain API.

Basic Markup

Most domains provide a number of object description directives, used to
describe specific objects provided by modules. Each directive requires one or
more signatures to provide basic information about what is being described, and
the content should be the description. The basic version makes entries in the
general index; if no index entry is desired, you can give the directive option
flag :noindex:. An example using a Python domain directive:

.. py:function:: spam(eggs)
 ham(eggs)

 Spam or ham the foo.

This describes the two Python functions spam and ham. (Note that when
signatures become too long, you can break them if you add a backslash to lines
that are continued in the next line. Example:

.. py:function:: filterwarnings(action, message='', category=Warning, \
 module='', lineno=0, append=False)
 :noindex:

(This example also shows how to use the :noindex: flag.)

The domains also provide roles that link back to these object descriptions. For
example, to link to one of the functions described in the example above, you
could say

The function :py:func:`spam` does a similar thing.

As you can see, both directive and role names contain the domain name and the
directive name.

Default Domain

To avoid having to writing the domain name all the time when you e.g. only
describe Python objects, a default domain can be selected with either the config
value primary_domain or this directive:

	
.. default-domain:: name

	Select a new default domain. While the primary_domain selects a
global default, this only has an effect within the same file.

If no other default is selected, the Python domain (named py) is the default
one, mostly for compatibility with documentation written for older versions of
Sphinx.

Directives and roles that belong to the default domain can be mentioned without
giving the domain name, i.e.

.. function:: pyfunc()

 Describes a Python function.

Reference to :func:`pyfunc`.

Cross-referencing syntax

For cross-reference roles provided by domains, the same facilities exist as for
general cross-references. See Cross-referencing syntax.

In short:

	You may supply an explicit title and reference target: :role:`title
<target>` will refer to target, but the link text will be title.

	If you prefix the content with !, no reference/hyperlink will be created.

	If you prefix the content with ~, the link text will only be the last
component of the target. For example, :py:meth:`~Queue.Queue.get` will
refer to Queue.Queue.get but only display get as the link text.

The Python Domain

The Python domain (name py) provides the following directives for module
declarations:

	
.. py:module:: name

	This directive marks the beginning of the description of a module (or package
submodule, in which case the name should be fully qualified, including the
package name). It does not create content (like e.g. py:class does).

This directive will also cause an entry in the global module index.

The platform option, if present, is a comma-separated list of the
platforms on which the module is available (if it is available on all
platforms, the option should be omitted). The keys are short identifiers;
examples that are in use include “IRIX”, “Mac”, “Windows”, and “Unix”. It is
important to use a key which has already been used when applicable.

The synopsis option should consist of one sentence describing the
module’s purpose – it is currently only used in the Global Module Index.

The deprecated option can be given (with no value) to mark a module as
deprecated; it will be designated as such in various locations then.

	
.. py:currentmodule:: name

	This directive tells Sphinx that the classes, functions etc. documented from
here are in the given module (like py:module), but it will not
create index entries, an entry in the Global Module Index, or a link target
for py:mod. This is helpful in situations where documentation
for things in a module is spread over multiple files or sections – one
location has the py:module directive, the others only
py:currentmodule.

The following directives are provided for module and class contents:

	
.. py:data:: name

	Describes global data in a module, including both variables and values used
as “defined constants.” Class and object attributes are not documented
using this environment.

	
.. py:exception:: name

	Describes an exception class. The signature can, but need not include
parentheses with constructor arguments.

	
.. py:function:: name(signature)

	Describes a module-level function. The signature should include the
parameters, enclosing optional parameters in brackets. Default values can be
given if it enhances clarity; see Python Signatures. For example:

.. py:function:: Timer.repeat([repeat=3[, number=1000000]])

Object methods are not documented using this directive. Bound object methods
placed in the module namespace as part of the public interface of the module
are documented using this, as they are equivalent to normal functions for
most purposes.

The description should include information about the parameters required and
how they are used (especially whether mutable objects passed as parameters
are modified), side effects, and possible exceptions. A small example may be
provided.

	
.. py:class:: name[(signature)]

	Describes a class. The signature can include parentheses with parameters
which will be shown as the constructor arguments. See also
Python Signatures.

Methods and attributes belonging to the class should be placed in this
directive’s body. If they are placed outside, the supplied name should
contain the class name so that cross-references still work. Example:

.. py:class:: Foo
 .. py:method:: quux()

-- or --

.. py:class:: Bar

.. py:method:: Bar.quux()

The first way is the preferred one.

	
.. py:attribute:: name

	Describes an object data attribute. The description should include
information about the type of the data to be expected and whether it may be
changed directly.

	
.. py:method:: name(signature)

	Describes an object method. The parameters should not include the self
parameter. The description should include similar information to that
described for function. See also Python Signatures.

	
.. py:staticmethod:: name(signature)

	Like py:method, but indicates that the method is a static method.

New in version 0.4.

	
.. py:classmethod:: name(signature)

	Like py:method, but indicates that the method is a class method.

New in version 0.6.

	
.. py:decorator:: name

	
.. py:decorator:: name(signature)

	Describes a decorator function. The signature should not represent the
signature of the actual function, but the usage as a decorator. For example,
given the functions

def removename(func):
 func.__name__ = ''
 return func

def setnewname(name):
 def decorator(func):
 func.__name__ = name
 return func
 return decorator

the descriptions should look like this:

.. py:decorator:: removename

 Remove name of the decorated function.

.. py:decorator:: setnewname(name)

 Set name of the decorated function to *name*.

There is no py:deco role to link to a decorator that is marked up with
this directive; rather, use the py:func role.

	
.. py:decoratormethod:: name

	
.. py:decoratormethod:: name(signature)

	Same as py:decorator, but for decorators that are methods.

Refer to a decorator method using the py:meth role.

Python Signatures

Signatures of functions, methods and class constructors can be given like they
would be written in Python, with the exception that optional parameters can be
indicated by brackets:

.. py:function:: compile(source[, filename[, symbol]])

It is customary to put the opening bracket before the comma. In addition to
this “nested” bracket style, a “flat” style can also be used, due to the fact
that most optional parameters can be given independently:

.. py:function:: compile(source[, filename, symbol])

Default values for optional arguments can be given (but if they contain commas,
they will confuse the signature parser). Python 3-style argument annotations
can also be given as well as return type annotations:

.. py:function:: compile(source : string[, filename, symbol]) -> ast object

Info field lists

New in version 0.4.

Inside Python object description directives, reST field lists with these fields
are recognized and formatted nicely:

	param, parameter, arg, argument, key, keyword:
Description of a parameter.

	type: Type of a parameter.

	raises, raise, except, exception: That (and when) a specific
exception is raised.

	var, ivar, cvar: Description of a variable.

	returns, return: Description of the return value.

	rtype: Return type.

The field names must consist of one of these keywords and an argument (except
for returns and rtype, which do not need an argument). This is best
explained by an example:

.. py:function:: format_exception(etype, value, tb[, limit=None])

 Format the exception with a traceback.

 :param etype: exception type
 :param value: exception value
 :param tb: traceback object
 :param limit: maximum number of stack frames to show
 :type limit: integer or None
 :rtype: list of strings

This will render like this:

	
format_exception(etype, value, tb[, limit=None])

	Format the exception with a traceback.

	Parameters:	
	etype – exception type

	value – exception value

	tb – traceback object

	limit (integer or None) – maximum number of stack frames to show

	Return type:	list of strings

It is also possible to combine parameter type and description, if the type is a
single word, like this:

:param integer limit: maximum number of stack frames to show

Cross-referencing Python objects

The following roles refer to objects in modules and are possibly hyperlinked if
a matching identifier is found:

	
:py:mod:

	Reference a module; a dotted name may be used. This should also be used for
package names.

	
:py:func:

	Reference a Python function; dotted names may be used. The role text needs
not include trailing parentheses to enhance readability; they will be added
automatically by Sphinx if the add_function_parentheses config
value is true (the default).

	
:py:data:

	Reference a module-level variable.

	
:py:const:

	Reference a “defined” constant. This may be a C-language #define or a
Python variable that is not intended to be changed.

	
:py:class:

	Reference a class; a dotted name may be used.

	
:py:meth:

	Reference a method of an object. The role text can include the type name and
the method name; if it occurs within the description of a type, the type name
can be omitted. A dotted name may be used.

	
:py:attr:

	Reference a data attribute of an object.

	
:py:exc:

	Reference an exception. A dotted name may be used.

	
:py:obj:

	Reference an object of unspecified type. Useful e.g. as the
default_role.

New in version 0.4.

The name enclosed in this markup can include a module name and/or a class name.
For example, :py:func:`filter` could refer to a function named filter in
the current module, or the built-in function of that name. In contrast,
:py:func:`foo.filter` clearly refers to the filter function in the
foo module.

Normally, names in these roles are searched first without any further
qualification, then with the current module name prepended, then with the
current module and class name (if any) prepended. If you prefix the name with a
dot, this order is reversed. For example, in the documentation of Python’s
codecs module, :py:func:`open` always refers to the built-in
function, while :py:func:`.open` refers to codecs.open().

A similar heuristic is used to determine whether the name is an attribute of the
currently documented class.

Also, if the name is prefixed with a dot, and no exact match is found, the
target is taken as a suffix and all object names with that suffix are
searched. For example, :py:meth:`.TarFile.close` references the
tarfile.TarFile.close() function, even if the current module is not
tarfile. Since this can get ambiguous, if there is more than one possible
match, you will get a warning from Sphinx.

Note that you can combine the ~ and . prefixes:
:py:meth:`~.TarFile.close` will reference the tarfile.TarFile.close()
method, but the visible link caption will only be close().

The C Domain

The C domain (name c) is suited for documentation of C API.

	
.. c:function:: type name(signature)

	Describes a C function. The signature should be given as in C, e.g.:

.. c:function:: PyObject* PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)

This is also used to describe function-like preprocessor macros. The names
of the arguments should be given so they may be used in the description.

Note that you don’t have to backslash-escape asterisks in the signature, as
it is not parsed by the reST inliner.

	
.. c:member:: type name

	Describes a C struct member. Example signature:

.. c:member:: PyObject* PyTypeObject.tp_bases

The text of the description should include the range of values allowed, how
the value should be interpreted, and whether the value can be changed.
References to structure members in text should use the member role.

	
.. c:macro:: name

	Describes a “simple” C macro. Simple macros are macros which are used for
code expansion, but which do not take arguments so cannot be described as
functions. This is not to be used for simple constant definitions. Examples
of its use in the Python documentation include PyObject_HEAD and
Py_BEGIN_ALLOW_THREADS.

	
.. c:type:: name

	Describes a C type (whether defined by a typedef or struct). The signature
should just be the type name.

	
.. c:var:: type name

	Describes a global C variable. The signature should include the type, such
as:

.. c:var:: PyObject* PyClass_Type

Cross-referencing C constructs

The following roles create cross-references to C-language constructs if they are
defined in the documentation:

	
:c:data:

	Reference a C-language variable.

	
:c:func:

	Reference a C-language function. Should include trailing parentheses.

	
:c:macro:

	Reference a “simple” C macro, as defined above.

	
:c:type:

	Reference a C-language type.

The C++ Domain

The C++ domain (name cpp) supports documenting C++ projects.

The following directives are available:

	
.. cpp:class:: signatures

	
.. cpp:function:: signatures

	
.. cpp:member:: signatures

	
.. cpp:type:: signatures

	Describe a C++ object. Full signature specification is supported – give the
signature as you would in the declaration. Here some examples:

.. cpp:function:: bool namespaced::theclass::method(int arg1, std::string arg2)

 Describes a method with parameters and types.

.. cpp:function:: bool namespaced::theclass::method(arg1, arg2)

 Describes a method without types.

.. cpp:function:: const T &array<T>::operator[]() const

 Describes the constant indexing operator of a templated array.

.. cpp:function:: operator bool() const

 Describe a casting operator here.

.. cpp:function:: constexpr void foo(std::string &bar[2]) noexcept

 Describe a constexpr function here.

.. cpp:member:: std::string theclass::name

.. cpp:member:: std::string theclass::name[N][M]

.. cpp:type:: theclass::const_iterator

Will be rendered like this:

	
bool namespaced::theclass::method(int arg1, std::string arg2)

	Describes a method with parameters and types.

	
bool namespaced::theclass::method(arg1, arg2)

	Describes a method without types.

	
const T& array<T>::operator[]() const

	Describes the constant indexing operator of a templated array.

	
 operator bool() const

	Describe a casting operator here.

	
constexpr void foo(std::string& bar[2]) noexcept

	Describe a constexpr function here.

	
std::string theclass::name

	

	
std::string theclass::name[N][M]

	

	
type theclass::const_iterator

	

	
.. cpp:namespace:: namespace

	Select the current C++ namespace for the following objects.

These roles link to the given object types:

	
:cpp:class:

	
:cpp:func:

	
:cpp:member:

	
:cpp:type:

	Reference a C++ object. You can give the full signature (and need to, for
overloaded functions.)

Note

Sphinx’ syntax to give references a custom title can interfere with
linking to template classes, if nothing follows the closing angle
bracket, i.e. if the link looks like this: :cpp:class:`MyClass<T>`.
This is interpreted as a link to T with a title of MyClass.
In this case, please escape the opening angle bracket with a backslash,
like this: :cpp:class:`MyClass\<T>`.

Note on References

It is currently impossible to link to a specific version of an
overloaded method. Currently the C++ domain is the first domain
that has basic support for overloaded methods and until there is more
data for comparison we don’t want to select a bad syntax to reference a
specific overload. Currently Sphinx will link to the first overloaded
version of the method / function.

The Standard Domain

The so-called “standard” domain collects all markup that doesn’t warrant a
domain of its own. Its directives and roles are not prefixed with a domain
name.

The standard domain is also where custom object descriptions, added using the
add_object_type() API, are placed.

There is a set of directives allowing documenting command-line programs:

	
.. option:: name args, name args, ...

	Describes a command line option or switch. Option argument names should be
enclosed in angle brackets. Example:

.. option:: -m <module>, --module <module>

 Run a module as a script.

The directive will create a cross-reference target named after the first
option, referencable by option (in the example case, you’d use
something like :option:`-m`).

	
.. envvar:: name

	Describes an environment variable that the documented code or program uses or
defines. Referencable by envvar.

	
.. program:: name

	Like py:currentmodule, this directive produces no output. Instead, it
serves to notify Sphinx that all following option directives
document options for the program called name.

If you use program, you have to qualify the references in your
option roles by the program name, so if you have the following
situation

.. program:: rm

.. option:: -r

 Work recursively.

.. program:: svn

.. option:: -r revision

 Specify the revision to work upon.

then :option:`rm -r` would refer to the first option, while
:option:`svn -r` would refer to the second one.

The program name may contain spaces (in case you want to document subcommands
like svn add and svn commit separately).

New in version 0.5.

There is also a very generic object description directive, which is not tied to
any domain:

	
.. describe:: text

	
.. object:: text

	This directive produces the same formatting as the specific ones provided by
domains, but does not create index entries or cross-referencing targets.
Example:

.. describe:: PAPER

 You can set this variable to select a paper size.

The JavaScript Domain

The JavaScript domain (name js) provides the following directives:

	
.. js:function:: name(signature)

	Describes a JavaScript function or method. If you want to describe
arguments as optional use square brackets as documented for Python signatures.

You can use fields to give more details about arguments and their expected
types, errors which may be thrown by the function, and the value being
returned:

.. js:function:: $.getJSON(href, callback[, errback])

 :param string href: An URI to the location of the resource.
 :param callback: Get's called with the object.
 :param errback:
 Get's called in case the request fails. And a lot of other
 text so we need multiple lines
 :throws SomeError: For whatever reason in that case.
 :returns: Something

This is rendered as:

	
$.getJSON(href, callback[, errback])

	

	Arguments:	
	href (string) – An URI to the location of the resource.

	callback – Get’s called with the object.

	errback – Get’s called in case the request fails. And a lot of other
text so we need multiple lines.

	Throws SomeError:

		For whatever reason in that case.

	Returns:	Something

	
.. js:class:: name

	Describes a constructor that creates an object. This is basically like
a function but will show up with a class prefix:

.. js:class:: MyAnimal(name[, age])

 :param string name: The name of the animal
 :param number age: an optional age for the animal

This is rendered as:

	
class MyAnimal(name[, age])

	

	Arguments:	
	name (string) – The name of the animal

	age (number) – an optional age for the animal

	
.. js:data:: name

	Describes a global variable or constant.

	
.. js:attribute:: object.name

	Describes the attribute name of object.

These roles are provided to refer to the described objects:

	
:js:func:

	
:js:class:

	
:js:data:

	
:js:attr:

	

The reStructuredText domain

The reStructuredText domain (name rst) provides the following directives:

	
.. rst:directive:: name

	Describes a reST directive. The name can be a single directive name or
actual directive syntax (.. prefix and :: suffix) with arguments that
will be rendered differently. For example:

.. rst:directive:: foo

 Foo description.

.. rst:directive:: .. bar:: baz

 Bar description.

will be rendered as:

	
.. foo::

	Foo description.

	
.. bar:: baz

	Bar description.

	
.. rst:role:: name

	Describes a reST role. For example:

.. rst:role:: foo

 Foo description.

will be rendered as:

	
:foo:

	Foo description.

These roles are provided to refer to the described objects:

	
:rst:dir:

	
:rst:role:

	

More domains

The sphinx-contrib [https://bitbucket.org/birkenfeld/sphinx-contrib/] repository contains more domains available as extensions;
currently Ada, CoffeeScript [http://pypi.python.org/pypi/sphinxcontrib-coffee], Erlang [http://pypi.python.org/pypi/sphinxcontrib-erlangdomain], HTTP [http://pypi.python.org/pypi/sphinxcontrib-httpdomain], Jinja [http://pypi.python.org/pypi/sphinxcontrib-jinjadomain], PHP [http://pypi.python.org/pypi/sphinxcontrib-phpdomain], Ruby, and Scala [http://pypi.python.org/pypi/sphinxcontrib-scaladomain]
domains.

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 Available builders

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

Available builders

These are the built-in Sphinx builders. More builders can be added by
extensions.

The builder’s “name” must be given to the -b command-line option of
sphinx-build to select a builder.

	
class sphinx.builders.html.StandaloneHTMLBuilder

	This is the standard HTML builder. Its output is a directory with HTML
files, complete with style sheets and optionally the reST sources. There are
quite a few configuration values that customize the output of this builder,
see the chapter Options for HTML output for details.

Its name is html.

	
class sphinx.builders.html.DirectoryHTMLBuilder

	This is a subclass of the standard HTML builder. Its output is a directory
with HTML files, where each file is called index.html and placed in a
subdirectory named like its page name. For example, the document
markup/rest.rst will not result in an output file markup/rest.html,
but markup/rest/index.html. When generating links between pages, the
index.html is omitted, so that the URL would look like markup/rest/.

Its name is dirhtml.

New in version 0.6.

	
class sphinx.builders.html.SingleFileHTMLBuilder

	This is an HTML builder that combines the whole project in one output file.
(Obviously this only works with smaller projects.) The file is named like
the master document. No indices will be generated.

Its name is singlehtml.

New in version 1.0.

	
class sphinx.builders.htmlhelp.HTMLHelpBuilder

	This builder produces the same output as the standalone HTML builder, but
also generates HTML Help support files that allow the Microsoft HTML Help
Workshop to compile them into a CHM file.

Its name is htmlhelp.

	
class sphinx.builders.qthelp.QtHelpBuilder

	This builder produces the same output as the standalone HTML builder, but
also generates Qt help [http://doc.trolltech.com/4.6/qthelp-framework.html] collection support files that allow
the Qt collection generator to compile them.

Its name is qthelp.

	
class sphinx.builders.devhelp.DevhelpBuilder

	This builder produces the same output as the standalone HTML builder, but
also generates GNOME Devhelp [http://live.gnome.org/devhelp]
support file that allows the GNOME Devhelp reader to view them.

Its name is devhelp.

	
class sphinx.builders.epub.EpubBuilder

	This builder produces the same output as the standalone HTML builder, but
also generates an epub file for ebook readers. See Epub info for
details about it. For definition of the epub format, have a look at
http://idpf.org/epub or http://en.wikipedia.org/wiki/EPUB.
The builder creates EPUB 2 files.

Some ebook readers do not show the link targets of references. Therefore
this builder adds the targets after the link when necessary. The display
of the URLs can be customized by adding CSS rules for the class
link-target.

Its name is epub.

	
class sphinx.builders.latex.LaTeXBuilder

	This builder produces a bunch of LaTeX files in the output directory. You
have to specify which documents are to be included in which LaTeX files via
the latex_documents configuration value. There are a few
configuration values that customize the output of this builder, see the
chapter Options for LaTeX output for details.

Note

The produced LaTeX file uses several LaTeX packages that may not be
present in a “minimal” TeX distribution installation. For TeXLive,
the following packages need to be installed:

	latex-recommended

	latex-extra

	fonts-recommended

Its name is latex.

Note that a direct PDF builder using ReportLab is available in rst2pdf [http://rst2pdf.googlecode.com] version 0.12 or greater. You need to add
'rst2pdf.pdfbuilder' to your extensions to enable it, its name is
pdf. Refer to the rst2pdf manual [http://lateral.netmanagers.com.ar/static/manual.pdf] for details.

	
class sphinx.builders.text.TextBuilder

	This builder produces a text file for each reST file – this is almost the
same as the reST source, but with much of the markup stripped for better
readability.

Its name is text.

New in version 0.4.

	
class sphinx.builders.manpage.ManualPageBuilder

	This builder produces manual pages in the groff format. You have to specify
which documents are to be included in which manual pages via the
man_pages configuration value.

Its name is man.

Note

This builder requires the docutils manual page writer, which is only
available as of docutils 0.6.

New in version 1.0.

	
class sphinx.builders.texinfo.TexinfoBuilder

	This builder produces Texinfo files that can be processed into Info files by
the makeinfo program. You have to specify which documents are to
be included in which Texinfo files via the texinfo_documents
configuration value.

The Info format is the basis of the on-line help system used by GNU Emacs and
the terminal-based program info. See Texinfo info for more
details. The Texinfo format is the official documentation system used by the
GNU project. More information on Texinfo can be found at
http://www.gnu.org/software/texinfo/.

Its name is texinfo.

New in version 1.1.

	
class sphinx.builders.html.SerializingHTMLBuilder

	This builder uses a module that implements the Python serialization API
(pickle, simplejson, phpserialize, and others) to dump the generated
HTML documentation. The pickle builder is a subclass of it.

A concrete subclass of this builder serializing to the PHP serialization [http://pypi.python.org/pypi/phpserialize]
format could look like this:

import phpserialize

class PHPSerializedBuilder(SerializingHTMLBuilder):
 name = 'phpserialized'
 implementation = phpserialize
 out_suffix = '.file.phpdump'
 globalcontext_filename = 'globalcontext.phpdump'
 searchindex_filename = 'searchindex.phpdump'

	
implementation

	A module that implements dump(), load(), dumps() and loads()
functions that conform to the functions with the same names from the
pickle module. Known modules implementing this interface are
simplejson (or json in Python 2.6), phpserialize, plistlib,
and others.

	
out_suffix

	The suffix for all regular files.

	
globalcontext_filename

	The filename for the file that contains the “global context”. This
is a dict with some general configuration values such as the name
of the project.

	
searchindex_filename

	The filename for the search index Sphinx generates.

See Serialization builder details for details about the output format.

New in version 0.5.

	
class sphinx.builders.html.PickleHTMLBuilder

	This builder produces a directory with pickle files containing mostly HTML
fragments and TOC information, for use of a web application (or custom
postprocessing tool) that doesn’t use the standard HTML templates.

See Serialization builder details for details about the output format.

Its name is pickle. (The old name web still works as well.)

The file suffix is .fpickle. The global context is called
globalcontext.pickle, the search index searchindex.pickle.

	
class sphinx.builders.html.JSONHTMLBuilder

	This builder produces a directory with JSON files containing mostly HTML
fragments and TOC information, for use of a web application (or custom
postprocessing tool) that doesn’t use the standard HTML templates.

See Serialization builder details for details about the output format.

Its name is json.

The file suffix is .fjson. The global context is called
globalcontext.json, the search index searchindex.json.

New in version 0.5.

	
class sphinx.builders.gettext.MessageCatalogBuilder

	This builder produces gettext-style message catalogs. Each top-level file or
subdirectory grows a single .pot catalog template.

See the documentation on Internationalization for further reference.

Its name is gettext.

New in version 1.1.

	
class sphinx.builders.changes.ChangesBuilder

	This builder produces an HTML overview of all versionadded,
versionchanged and deprecated directives for the current
version. This is useful to generate a ChangeLog file, for
example.

Its name is changes.

	
class sphinx.builders.linkcheck.CheckExternalLinksBuilder

	This builder scans all documents for external links, tries to open them with
urllib2, and writes an overview which ones are broken and redirected
to standard output and to output.txt in the output directory.

Its name is linkcheck.

Built-in Sphinx extensions that offer more builders are:

	doctest

	coverage

Serialization builder details

All serialization builders outputs one file per source file and a few special
files. They also copy the reST source files in the directory _sources
under the output directory.

The PickleHTMLBuilder is a builtin subclass that implements the pickle
serialization interface.

The files per source file have the extensions of
out_suffix, and are arranged in directories
just as the source files are. They unserialize to a dictionary (or dictionary
like structure) with these keys:

	body

	The HTML “body” (that is, the HTML rendering of the source file), as rendered
by the HTML translator.

	title

	The title of the document, as HTML (may contain markup).

	toc

	The table of contents for the file, rendered as an HTML .

	display_toc

	A boolean that is True if the toc contains more than one entry.

	current_page_name

	The document name of the current file.

	parents, prev and next

	Information about related chapters in the TOC tree. Each relation is a
dictionary with the keys link (HREF for the relation) and title
(title of the related document, as HTML). parents is a list of
relations, while prev and next are a single relation.

	sourcename

	The name of the source file under _sources.

The special files are located in the root output directory. They are:

	SerializingHTMLBuilder.globalcontext_filename

	A pickled dict with these keys:

	project, copyright, release, version

	The same values as given in the configuration file.

	style

	html_style.

	last_updated

	Date of last build.

	builder

	Name of the used builder, in the case of pickles this is always
'pickle'.

	titles

	A dictionary of all documents’ titles, as HTML strings.

	SerializingHTMLBuilder.searchindex_filename

	An index that can be used for searching the documentation. It is a pickled
list with these entries:

	A list of indexed docnames.

	A list of document titles, as HTML strings, in the same order as the first
list.

	A dict mapping word roots (processed by an English-language stemmer) to a
list of integers, which are indices into the first list.

	environment.pickle

	The build environment. This is always a pickle file, independent of the
builder and a copy of the environment that was used when the builder was
started.

Todo

Document common members.

Unlike the other pickle files this pickle file requires that the sphinx
package is available on unpickling.

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 The build configuration file

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

The build configuration file

The configuration directory must contain a file named conf.py.
This file (containing Python code) is called the “build configuration file” and
contains all configuration needed to customize Sphinx input and output behavior.

The configuration file is executed as Python code at build time (using
execfile(), and with the current directory set to its containing
directory), and therefore can execute arbitrarily complex code. Sphinx then
reads simple names from the file’s namespace as its configuration.

Important points to note:

	If not otherwise documented, values must be strings, and their default is the
empty string.

	The term “fully-qualified name” refers to a string that names an importable
Python object inside a module; for example, the FQN
"sphinx.builders.Builder" means the Builder class in the
sphinx.builders module.

	Remember that document names use / as the path separator and don’t contain
the file name extension.

	Since conf.py is read as a Python file, the usual rules apply for
encodings and Unicode support: declare the encoding using an encoding cookie
(a comment like # -*- coding: utf-8 -*-) and use Unicode string literals
when you include non-ASCII characters in configuration values.

	The contents of the config namespace are pickled (so that Sphinx can find out
when configuration changes), so it may not contain unpickleable values –
delete them from the namespace with del if appropriate. Modules are
removed automatically, so you don’t need to del your imports after use.

	There is a special object named tags available in the config file.
It can be used to query and change the tags (see Including content based on tags). Use
tags.has('tag') to query, tags.add('tag') and tags.remove('tag')
to change.

General configuration

	
extensions

	A list of strings that are module names of Sphinx extensions. These can be
extensions coming with Sphinx (named sphinx.ext.*) or custom ones.

Note that you can extend sys.path within the conf file if your
extensions live in another directory – but make sure you use absolute paths.
If your extension path is relative to the configuration directory,
use os.path.abspath() like so:

import sys, os

sys.path.append(os.path.abspath('sphinxext'))

extensions = ['extname']

That way, you can load an extension called extname from the subdirectory
sphinxext.

The configuration file itself can be an extension; for that, you only need to
provide a setup() function in it.

	
source_suffix

	The file name extension of source files. Only files with this suffix will be
read as sources. Default is '.rst'.

	
source_encoding

	The encoding of all reST source files. The recommended encoding, and the
default value, is 'utf-8-sig'.

New in version 0.5: Previously, Sphinx accepted only UTF-8 encoded sources.

	
master_doc

	The document name of the “master” document, that is, the document that
contains the root toctree directive. Default is 'contents'.

	
exclude_patterns

	A list of glob-style patterns that should be excluded when looking for source
files. [1] They are matched against the source file names relative to the
source directory, using slashes as directory separators on all platforms.

Example patterns:

	'library/xml.rst' – ignores the library/xml.rst file (replaces
entry in unused_docs)

	'library/xml' – ignores the library/xml directory (replaces entry
in exclude_trees)

	'library/xml*' – ignores all files and directories starting with
library/xml

	'**/.svn' – ignores all .svn directories (replaces entry in
exclude_dirnames)

exclude_patterns is also consulted when looking for static files
in html_static_path.

New in version 1.0.

	
unused_docs

	A list of document names that are present, but not currently included in the
toctree. Use this setting to suppress the warning that is normally emitted
in that case.

Deprecated since version 1.0: Use exclude_patterns instead.

	
exclude_trees

	A list of directory paths, relative to the source directory, that are to be
recursively excluded from the search for source files, that is, their
subdirectories won’t be searched too. The default is [].

New in version 0.4.

Deprecated since version 1.0: Use exclude_patterns instead.

	
exclude_dirnames

	A list of directory names that are to be excluded from any recursive
operation Sphinx performs (e.g. searching for source files or copying static
files). This is useful, for example, to exclude version-control-specific
directories like 'CVS'. The default is [].

New in version 0.5.

Deprecated since version 1.0: Use exclude_patterns instead.

	
templates_path

	A list of paths that contain extra templates (or templates that overwrite
builtin/theme-specific templates). Relative paths are taken as relative to
the configuration directory.

	
template_bridge

	A string with the fully-qualified name of a callable (or simply a class) that
returns an instance of TemplateBridge. This
instance is then used to render HTML documents, and possibly the output of
other builders (currently the changes builder). (Note that the template
bridge must be made theme-aware if HTML themes are to be used.)

	
rst_epilog

	A string of reStructuredText that will be included at the end of every source
file that is read. This is the right place to add substitutions that should
be available in every file. An example:

rst_epilog = """
.. |psf| replace:: Python Software Foundation
"""

New in version 0.6.

	
rst_prolog

	A string of reStructuredText that will be included at the beginning of every
source file that is read.

New in version 1.0.

	
primary_domain

	The name of the default domain. Can also be None to
disable a default domain. The default is 'py'. Those objects in other
domains (whether the domain name is given explicitly, or selected by a
default-domain directive) will have the domain name explicitly
prepended when named (e.g., when the default domain is C, Python functions
will be named “Python function”, not just “function”).

New in version 1.0.

	
default_role

	The name of a reST role (builtin or Sphinx extension) to use as the default
role, that is, for text marked up `like this`. This can be set to
'py:obj' to make `filter` a cross-reference to the Python function
“filter”. The default is None, which doesn’t reassign the default role.

The default role can always be set within individual documents using the
standard reST default-role directive.

New in version 0.4.

	
keep_warnings

	If true, keep warnings as “system message” paragraphs in the built documents.
Regardless of this setting, warnings are always written to the standard error
stream when sphinx-build is run.

The default is False, the pre-0.5 behavior was to always keep them.

New in version 0.5.

	
needs_sphinx

	If set to a major.minor version string like '1.1', Sphinx will
compare it with its version and refuse to build if it is too old. Default is
no requirement.

New in version 1.0.

	
nitpicky

	If true, Sphinx will warn about all references where the target cannot be
found. Default is False. You can activate this mode temporarily using
the -n command-line switch.

New in version 1.0.

	
nitpick_ignore

	A list of (type, target) tuples (by default empty) that should be ignored
when generating warnings in “nitpicky mode”. Note that type should
include the domain name. An example entry would be ('py:func', 'int').

New in version 1.1.

Project information

	
project

	The documented project’s name.

	
copyright

	A copyright statement in the style '2008, Author Name'.

	
version

	The major project version, used as the replacement for |version|. For
example, for the Python documentation, this may be something like 2.6.

	
release

	The full project version, used as the replacement for |release| and
e.g. in the HTML templates. For example, for the Python documentation, this
may be something like 2.6.0rc1.

If you don’t need the separation provided between version and
release, just set them both to the same value.

	
today

	
today_fmt

	These values determine how to format the current date, used as the
replacement for |today|.

	If you set today to a non-empty value, it is used.

	Otherwise, the current time is formatted using time.strftime() and
the format given in today_fmt.

The default is no today and a today_fmt of '%B %d,
%Y' (or, if translation is enabled with language, an equivalent
%format for the selected locale).

	
highlight_language

	The default language to highlight source code in. The default is
'python'. The value should be a valid Pygments lexer name, see
Showing code examples for more details.

New in version 0.5.

	
pygments_style

	The style name to use for Pygments highlighting of source code. The default
style is selected by the theme for HTML output, and 'sphinx' otherwise.

Changed in version 0.3: If the value is a fully-qualified name of a custom Pygments style class,
this is then used as custom style.

	
add_function_parentheses

	A boolean that decides whether parentheses are appended to function and
method role text (e.g. the content of :func:`input`) to signify that the
name is callable. Default is True.

	
add_module_names

	A boolean that decides whether module names are prepended to all
object names (for object types where a “module” of some kind is
defined), e.g. for py:function directives. Default is True.

	
show_authors

	A boolean that decides whether codeauthor and
sectionauthor directives produce any output in the built files.

	
modindex_common_prefix

	A list of prefixes that are ignored for sorting the Python module index
(e.g., if this is set to ['foo.'], then foo.bar is shown under B,
not F). This can be handy if you document a project that consists of a
single package. Works only for the HTML builder currently. Default is
[].

New in version 0.6.

	
trim_footnote_reference_space

	Trim spaces before footnote references that are necessary for the reST parser
to recognize the footnote, but do not look too nice in the output.

New in version 0.6.

	
trim_doctest_flags

	If true, doctest flags (comments looking like # doctest: FLAG, ...) at
the ends of lines and <BLANKLINE> markers are removed for all code
blocks showing interactive Python sessions (i.e. doctests). Default is
true. See the extension doctest for more possibilities
of including doctests.

New in version 1.0.

Changed in version 1.1: Now also removes <BLANKLINE>.

Options for internationalization

These options influence Sphinx’ Native Language Support. See the
documentation on Internationalization for details.

	
language

	The code for the language the docs are written in. Any text automatically
generated by Sphinx will be in that language. Also, Sphinx will try to
substitute individual paragraphs from your documents with the translation
sets obtained from locale_dirs. In the LaTeX builder, a suitable
language will be selected as an option for the Babel package. Default is
None, which means that no translation will be done.

New in version 0.5.

Currently supported languages by Sphinx are:

	bn – Bengali

	ca – Catalan

	cs – Czech

	da – Danish

	de – German

	en – English

	es – Spanish

	et – Estonian

	fa – Iranian

	fi – Finnish

	fr – French

	hr – Croatian

	hu – Hungarian

	it – Italian

	ja – Japanese

	ko – Korean

	lt – Lithuanian

	lv – Latvian

	nb_NO – Norwegian Bokmal

	ne – Nepali

	nl – Dutch

	pl – Polish

	pt_BR – Brazilian Portuguese

	ru – Russian

	sk – Slovak

	sl – Slovenian

	sv – Swedish

	tr – Turkish

	uk_UA – Ukrainian

	zh_CN – Simplified Chinese

	zh_TW – Traditional Chinese

	
locale_dirs

	
New in version 0.5.

Directories in which to search for additional message catalogs (see
language), relative to the source directory. The directories on
this path are searched by the standard gettext module.

Internal messages are fetched from a text domain of sphinx; so if you
add the directory ./locale to this settting, the message catalogs
(compiled from .po format using msgfmt) must be in
./locale/language/LC_MESSAGES/sphinx.mo. The text domain of
individual documents depends on gettext_compact.

The default is [].

	
gettext_compact

	
New in version 1.1.

If true, a document’s text domain is its docname if it is a top-level
project file and its very base directory otherwise.

By default, the document markup/code.rst ends up in the markup text
domain. With this option set to False, it is markup/code.

Options for HTML output

These options influence HTML as well as HTML Help output, and other builders
that use Sphinx’ HTMLWriter class.

	
html_theme

	The “theme” that the HTML output should use. See the section about
theming. The default is 'default'.

New in version 0.6.

	
html_theme_options

	A dictionary of options that influence the look and feel of the selected
theme. These are theme-specific. For the options understood by the builtin
themes, see this section.

New in version 0.6.

	
html_theme_path

	A list of paths that contain custom themes, either as subdirectories or as
zip files. Relative paths are taken as relative to the configuration
directory.

New in version 0.6.

	
html_style

	The style sheet to use for HTML pages. A file of that name must exist either
in Sphinx’ static/ path, or in one of the custom paths given in
html_static_path. Default is the stylesheet given by the selected
theme. If you only want to add or override a few things compared to the
theme’s stylesheet, use CSS @import to import the theme’s stylesheet.

	
html_title

	The “title” for HTML documentation generated with Sphinx’ own templates.
This is appended to the <title> tag of individual pages, and used in the
navigation bar as the “topmost” element. It defaults to '<project>
v<revision> documentation', where the placeholders are replaced by the
config values of the same name.

	
html_short_title

	A shorter “title” for the HTML docs. This is used in for links in the header
and in the HTML Help docs. If not given, it defaults to the value of
html_title.

New in version 0.4.

	
html_context

	A dictionary of values to pass into the template engine’s context for all
pages. Single values can also be put in this dictionary using the
-A command-line option of sphinx-build.

New in version 0.5.

	
html_logo

	If given, this must be the name of an image file that is the logo of the
docs. It is placed at the top of the sidebar; its width should therefore not
exceed 200 pixels. Default: None.

New in version 0.4.1: The image file will be copied to the _static directory of the output
HTML, so an already existing file with that name will be overwritten.

	
html_favicon

	If given, this must be the name of an image file (within the static path, see
below) that is the favicon of the docs. Modern browsers use this as icon for
tabs, windows and bookmarks. It should be a Windows-style icon file
(.ico), which is 16x16 or 32x32 pixels large. Default: None.

New in version 0.4.

	
html_static_path

	A list of paths that contain custom static files (such as style sheets or
script files). Relative paths are taken as relative to the configuration
directory. They are copied to the output directory after the theme’s static
files, so a file named default.css will overwrite the theme’s
default.css.

Changed in version 0.4: The paths in html_static_path can now contain subdirectories.

Changed in version 1.0: The entries in html_static_path can now be single files.

	
html_last_updated_fmt

	If this is not the empty string, a ‘Last updated on:’ timestamp is inserted
at every page bottom, using the given strftime() format. Default is
'%b %d, %Y' (or a locale-dependent equivalent).

	
html_use_smartypants

	If true, SmartyPants will be used to convert quotes and dashes to
typographically correct entities. Default: True.

	
html_add_permalinks

	Sphinx will add “permalinks” for each heading and description environment as
paragraph signs that become visible when the mouse hovers over them.

This value determines the text for the permalink; it defaults to "¶".
Set it to None or the empty string to disable permalinks.

New in version 0.6: Previously, this was always activated.

Changed in version 1.1: This can now be a string to select the actual text of the link.
Previously, only boolean values were accepted.

	
html_sidebars

	Custom sidebar templates, must be a dictionary that maps document names to
template names.

The keys can contain glob-style patterns [1], in which case all matching
documents will get the specified sidebars. (A warning is emitted when a
more than one glob-style pattern matches for any document.)

The values can be either lists or single strings.

	If a value is a list, it specifies the complete list of sidebar templates
to include. If all or some of the default sidebars are to be included,
they must be put into this list as well.

The default sidebars (for documents that don’t match any pattern) are:
['localtoc.html', 'relations.html', 'sourcelink.html',
'searchbox.html'].

	If a value is a single string, it specifies a custom sidebar to be added
between the 'sourcelink.html' and 'searchbox.html' entries. This
is for compatibility with Sphinx versions before 1.0.

Builtin sidebar templates that can be rendered are:

	localtoc.html – a fine-grained table of contents of the current document

	globaltoc.html – a coarse-grained table of contents for the whole
documentation set, collapsed

	relations.html – two links to the previous and next documents

	sourcelink.html – a link to the source of the current document, if
enabled in html_show_sourcelink

	searchbox.html – the “quick search” box

Example:

html_sidebars = {
 '**': ['globaltoc.html', 'sourcelink.html', 'searchbox.html'],
 'using/windows': ['windowssidebar.html', 'searchbox.html'],
}

This will render the custom template windowssidebar.html and the quick
search box within the sidebar of the given document, and render the default
sidebars for all other pages (except that the local TOC is replaced by the
global TOC).

New in version 1.0: The ability to use globbing keys and to specify multiple sidebars.

Note that this value only has no effect if the chosen theme does not possess
a sidebar, like the builtin scrolls and haiku themes.

	
html_additional_pages

	Additional templates that should be rendered to HTML pages, must be a
dictionary that maps document names to template names.

Example:

html_additional_pages = {
 'download': 'customdownload.html',
}

This will render the template customdownload.html as the page
download.html.

	
html_domain_indices

	If true, generate domain-specific indices in addition to the general index.
For e.g. the Python domain, this is the global module index. Default is
True.

This value can be a bool or a list of index names that should be generated.
To find out the index name for a specific index, look at the HTML file name.
For example, the Python module index has the name 'py-modindex'.

New in version 1.0.

	
html_use_modindex

	If true, add a module index to the HTML documents. Default is True.

Deprecated since version 1.0: Use html_domain_indices.

	
html_use_index

	If true, add an index to the HTML documents. Default is True.

New in version 0.4.

	
html_split_index

	If true, the index is generated twice: once as a single page with all the
entries, and once as one page per starting letter. Default is False.

New in version 0.4.

	
html_copy_source

	If true, the reST sources are included in the HTML build as
_sources/name. The default is True.

Warning

If this config value is set to False, the JavaScript search function
will only display the titles of matching documents, and no excerpt from
the matching contents.

	
html_show_sourcelink

	If true (and html_copy_source is true as well), links to the
reST sources will be added to the sidebar. The default is True.

New in version 0.6.

	
html_use_opensearch

	If nonempty, an OpenSearch <http://opensearch.org> description file will be
output, and all pages will contain a <link> tag referring to it. Since
OpenSearch doesn’t support relative URLs for its search page location, the
value of this option must be the base URL from which these documents are
served (without trailing slash), e.g. "http://docs.python.org". The
default is ''.

	
html_file_suffix

	This is the file name suffix for generated HTML files. The default is
".html".

New in version 0.4.

	
html_link_suffix

	Suffix for generated links to HTML files. The default is whatever
html_file_suffix is set to; it can be set differently (e.g. to
support different web server setups).

New in version 0.6.

	
html_translator_class

	A string with the fully-qualified name of a HTML Translator class, that is, a
subclass of Sphinx’ HTMLTranslator, that is used
to translate document trees to HTML. Default is None (use the builtin
translator).

	
html_show_copyright

	If true, “(C) Copyright ...” is shown in the HTML footer. Default is True.

New in version 1.0.

	
html_show_sphinx

	If true, “Created using Sphinx” is shown in the HTML footer. Default is
True.

New in version 0.4.

	
html_output_encoding

	Encoding of HTML output files. Default is 'utf-8'. Note that this
encoding name must both be a valid Python encoding name and a valid HTML
charset value.

New in version 1.0.

	
html_compact_lists

	If true, list items containing only a single paragraph will not be rendered
with a <p> element. This is standard docutils behavior. Default:
True.

New in version 1.0.

	
html_secnumber_suffix

	Suffix for section numbers. Default: ". ". Set to " " to suppress
the final dot on section numbers.

New in version 1.0.

	
html_search_language

	Language to be used for generating the HTML full-text search index. This
defaults to the global language selected with language. If there
is no support for this language, "en" is used which selects the English
language.

Support is present for these languages:

	en – English

	ja – Japanese

New in version 1.1.

	
html_search_options

	A dictionary with options for the search language support, empty by default.
The meaning of these options depends on the language selected.

The English support has no options.

The Japanese support has these options:

	type – 'mecab' or 'default' (selects either MeCab or
TinySegmenter word splitter algorithm)

	dic_enc – the encoding for the MeCab algorithm

	dict – the dictionary to use for the MeCab algorithm

	lib – the library name for finding the MeCab library via ctypes if the
Python binding is not installed

New in version 1.1.

	
htmlhelp_basename

	Output file base name for HTML help builder. Default is 'pydoc'.

Options for epub output

These options influence the epub output. As this builder derives from the HTML
builder, the HTML options also apply where appropriate. The actual values for
some of the options is not really important, they just have to be entered into
the Dublin Core metadata [http://dublincore.org/].

	
epub_basename

	The basename for the epub file. It defaults to the project name.

	
epub_theme

	The HTML theme for the epub output. Since the default themes are not
optimized for small screen space, using the same theme for HTML and epub
output is usually not wise. This defaults to 'epub', a theme designed to
save visual space.

	
epub_theme_options

	A dictionary of options that influence the look and feel of the selected
theme. These are theme-specific. For the options understood by the builtin
themes, see this section.

New in version 1.2.

	
epub_title

	The title of the document. It defaults to the html_title option
but can be set independently for epub creation.

	
epub_author

	The author of the document. This is put in the Dublin Core metadata. The
default value is 'unknown'.

	
epub_language

	The language of the document. This is put in the Dublin Core metadata. The
default is the language option or 'en' if unset.

	
epub_publisher

	The publisher of the document. This is put in the Dublin Core metadata. You
may use any sensible string, e.g. the project homepage. The default value is
'unknown'.

	
epub_copyright

	The copyright of the document. It defaults to the copyright
option but can be set independently for epub creation.

	
epub_identifier

	An identifier for the document. This is put in the Dublin Core metadata.
For published documents this is the ISBN number, but you can also use an
alternative scheme, e.g. the project homepage. The default value is
'unknown'.

	
epub_scheme

	The publication scheme for the epub_identifier. This is put in
the Dublin Core metadata. For published books the scheme is 'ISBN'. If
you use the project homepage, 'URL' seems reasonable. The default value
is 'unknown'.

	
epub_uid

	A unique identifier for the document. This is put in the Dublin Core
metadata. You may use a random string. The default value is 'unknown'.

	
epub_cover

	The cover page information. This is a tuple containing the filenames of
the cover image and the html template. The rendered html cover page is
inserted as the first item in the spine in content.opf. If the
template filename is empty, no html cover page is created. No cover at all
is created if the tuple is empty. Examples:

epub_cover = ('_static/cover.png', 'epub-cover.html')
epub_cover = ('_static/cover.png', '')
epub_cover = ()

The default value is ().

New in version 1.1.

	
epub_guide

	Meta data for the guide element of content.opf. This is a
sequence of tuples containing the type, the uri and the title of
the optional guide information. See the OPF documentation
at http://idpf.org/epub for details. If possible, default entries
for the cover and toc types are automatically inserted. However,
the types can be explicitely overwritten if the default entries are not
appropriate. Example:

epub_guide = (('cover', 'cover.html', u'Cover Page'),)

The default value is ().

	
epub_pre_files

	Additional files that should be inserted before the text generated by
Sphinx. It is a list of tuples containing the file name and the title.
If the title is empty, no entry is added to toc.ncx. Example:

epub_pre_files = [
 ('index.html', 'Welcome'),
]

The default value is [].

	
epub_post_files

	Additional files that should be inserted after the text generated by Sphinx.
It is a list of tuples containing the file name and the title. This option
can be used to add an appendix. If the title is empty, no entry is added
to toc.ncx. The default value is [].

	
epub_exclude_files

	A list of files that are generated/copied in the build directory but should
not be included in the epub file. The default value is [].

	
epub_tocdepth

	The depth of the table of contents in the file toc.ncx. It should
be an integer greater than zero. The default value is 3. Note: A deeply
nested table of contents may be difficult to navigate.

	
epub_tocdup

	This flag determines if a toc entry is inserted again at the beginning of
it’s nested toc listing. This allows easier navitation to the top of
a chapter, but can be confusing because it mixes entries of differnet
depth in one list. The default value is True.

	
epub_fix_images

	This flag determines if sphinx should try to fix image formats that are not
supported by some epub readers. At the moment palette images with a small
color table are upgraded. You need the Python Image Library (PIL) installed
to use this option. The default value is False because the automatic
conversion may lose information.

New in version 1.2.

	
epub_max_image_width

	This option specifies the maximum width of images. If it is set to a value
greater than zero, images with a width larger than the given value are
scaled accordingly. If it is zero, no scaling is performed. The default
value is 0. You need the Python Image Library (PIL) installed to use
this option.

New in version 1.2.

Options for LaTeX output

These options influence LaTeX output.

	
latex_documents

	This value determines how to group the document tree into LaTeX source files.
It must be a list of tuples (startdocname, targetname, title, author,
documentclass, toctree_only), where the items are:

	startdocname: document name that is the “root” of the LaTeX file. All
documents referenced by it in TOC trees will be included in the LaTeX file
too. (If you want only one LaTeX file, use your master_doc
here.)

	targetname: file name of the LaTeX file in the output directory.

	title: LaTeX document title. Can be empty to use the title of the
startdoc. This is inserted as LaTeX markup, so special characters like a
backslash or ampersand must be represented by the proper LaTeX commands if
they are to be inserted literally.

	author: Author for the LaTeX document. The same LaTeX markup caveat as
for title applies. Use \and to separate multiple authors, as in:
'John \and Sarah'.

	documentclass: Normally, one of 'manual' or 'howto' (provided by
Sphinx). Other document classes can be given, but they must include the
“sphinx” package in order to define Sphinx’ custom LaTeX commands.
“howto” documents will not get appendices. Also, howtos will have a simpler
title page.

	toctree_only: Must be True or False. If True, the startdoc
document itself is not included in the output, only the documents
referenced by it via TOC trees. With this option, you can put extra stuff
in the master document that shows up in the HTML, but not the LaTeX output.

New in version 0.3: The 6th item toctree_only. Tuples with 5 items are still accepted.

	
latex_logo

	If given, this must be the name of an image file (relative to the
configuration directory) that is the logo of the docs. It is placed at the
top of the title page. Default: None.

	
latex_use_parts

	If true, the topmost sectioning unit is parts, else it is chapters. Default:
False.

New in version 0.3.

	
latex_appendices

	A list of document names to append as an appendix to all manuals.

	
latex_domain_indices

	If true, generate domain-specific indices in addition to the general index.
For e.g. the Python domain, this is the global module index. Default is
True.

This value can be a bool or a list of index names that should be generated,
like for html_domain_indices.

New in version 1.0.

	
latex_use_modindex

	If true, add a module index to LaTeX documents. Default is True.

Deprecated since version 1.0: Use latex_domain_indices.

	
latex_show_pagerefs

	If true, add page references after internal references. This is very useful
for printed copies of the manual. Default is False.

New in version 1.0.

	
latex_show_urls

	Control whether to display URL addresses. This is very useful for printed
copies of the manual. The setting can have the following values:

	'no' – do not display URLs (default)

	'footnote' – display URLs in footnotes

	'inline' – display URLs inline in parentheses

New in version 1.0.

Changed in version 1.1: This value is now a string; previously it was a boolean value, and a true
value selected the 'inline' display. For backwards compatibility,
True is still accepted.

	
latex_elements

	
New in version 0.5.

A dictionary that contains LaTeX snippets that override those Sphinx usually
puts into the generated .tex files.

Keep in mind that backslashes must be doubled in Python string literals to
avoid interpretation as escape sequences.

	Keys that you may want to override include:

	'papersize'

	Paper size option of the document class ('a4paper' or
'letterpaper'), default 'letterpaper'.

	'pointsize'

	Point size option of the document class ('10pt', '11pt' or
'12pt'), default '10pt'.

	'babel'

	“babel” package inclusion, default '\\usepackage{babel}'.

	'fontpkg'

	Font package inclusion, default '\\usepackage{times}' (which uses
Times and Helvetica). You can set this to '' to use the Computer
Modern fonts.

	'fncychap'

	Inclusion of the “fncychap” package (which makes fancy chapter titles),
default '\\usepackage[Bjarne]{fncychap}' for English documentation,
'\\usepackage[Sonny]{fncychap}' for internationalized docs (because
the “Bjarne” style uses numbers spelled out in English). Other
“fncychap” styles you can try include “Lenny”, “Glenn”, “Conny” and
“Rejne”. You can also set this to '' to disable fncychap.

	'preamble'

	Additional preamble content, default empty.

	'footer'`

	Additional footer content (before the indices), default empty.

	Keys that don’t need be overridden unless in special cases are:

	'inputenc'

	“inputenc” package inclusion, default
'\\usepackage[utf8]{inputenc}'.

	'fontenc'

	“fontenc” package inclusion, default '\\usepackage[T1]{fontenc}'.

	'maketitle'

	“maketitle” call, default '\\maketitle'. Override if you want to
generate a differently-styled title page.

	'tableofcontents'

	“tableofcontents” call, default '\\tableofcontents'. Override if
you want to generate a different table of contents or put content
between the title page and the TOC.

	'printindex'

	“printindex” call, the last thing in the file, default
'\\printindex'. Override if you want to generate the index
differently or append some content after the index.

	Keys that are set by other options and therefore should not be overridden are:

'docclass'
'classoptions'
'title'
'date'
'release'
'author'
'logo'
'releasename'
'makeindex'
'shorthandoff'

	
latex_docclass

	A dictionary mapping 'howto' and 'manual' to names of real document
classes that will be used as the base for the two Sphinx classes. Default
is to use 'article' for 'howto' and 'report' for 'manual'.

New in version 1.0.

	
latex_additional_files

	A list of file names, relative to the configuration directory, to copy to the
build directory when building LaTeX output. This is useful to copy files
that Sphinx doesn’t copy automatically, e.g. if they are referenced in custom
LaTeX added in latex_elements. Image files that are referenced in source
files (e.g. via .. image::) are copied automatically.

You have to make sure yourself that the filenames don’t collide with those of
any automatically copied files.

New in version 0.6.

	
latex_preamble

	Additional LaTeX markup for the preamble.

Deprecated since version 0.5: Use the 'preamble' key in the latex_elements value.

	
latex_paper_size

	The output paper size ('letter' or 'a4'). Default is 'letter'.

Deprecated since version 0.5: Use the 'papersize' key in the latex_elements value.

	
latex_font_size

	The font size (‘10pt’, ‘11pt’ or ‘12pt’). Default is '10pt'.

Deprecated since version 0.5: Use the 'pointsize' key in the latex_elements value.

Options for text output

These options influence text output.

	
text_newlines

	Determines which end-of-line character(s) are used in text output.

	'unix': use Unix-style line endings (\n)

	'windows': use Windows-style line endings (\r\n)

	'native': use the line ending style of the platform the documentation
is built on

Default: 'unix'.

New in version 1.1.

	
text_sectionchars

	A string of 7 characters that should be used for underlining sections.
The first character is used for first-level headings, the second for
second-level headings and so on.

The default is '*=-~"+`'.

New in version 1.1.

Options for manual page output

These options influence manual page output.

	
man_pages

	This value determines how to group the document tree into manual pages. It
must be a list of tuples (startdocname, name, description, authors,
section), where the items are:

	startdocname: document name that is the “root” of the manual page. All
documents referenced by it in TOC trees will be included in the manual file
too. (If you want one master manual page, use your master_doc
here.)

	name: name of the manual page. This should be a short string without
spaces or special characters. It is used to determine the file name as
well as the name of the manual page (in the NAME section).

	description: description of the manual page. This is used in the NAME
section.

	authors: A list of strings with authors, or a single string. Can be an
empty string or list if you do not want to automatically generate an
AUTHORS section in the manual page.

	section: The manual page section. Used for the output file name as well
as in the manual page header.

New in version 1.0.

	
man_show_urls

	If true, add URL addresses after links. Default is False.

New in version 1.1.

Options for Texinfo output

These options influence Texinfo output.

	
texinfo_documents

	This value determines how to group the document tree into Texinfo source
files. It must be a list of tuples (startdocname, targetname, title,
author, dir_entry, description, category, toctree_only), where the items
are:

	startdocname: document name that is the “root” of the Texinfo file. All
documents referenced by it in TOC trees will be included in the Texinfo
file too. (If you want only one Texinfo file, use your
master_doc here.)

	targetname: file name (no extension) of the Texinfo file in the output
directory.

	title: Texinfo document title. Can be empty to use the title of the
startdoc. Inserted as Texinfo markup, so special characters like @ and
{} will need to be escaped to be inserted literally.

	author: Author for the Texinfo document. Inserted as Texinfo markup.
Use @* to separate multiple authors, as in: 'John@*Sarah'.

	dir_entry: The name that will appear in the top-level DIR menu file.

	description: Descriptive text to appear in the top-level DIR menu
file.

	category: Specifies the section which this entry will appear in the
top-level DIR menu file.

	toctree_only: Must be True or False. If True, the startdoc
document itself is not included in the output, only the documents
referenced by it via TOC trees. With this option, you can put extra stuff
in the master document that shows up in the HTML, but not the Texinfo
output.

New in version 1.1.

	
texinfo_appendices

	A list of document names to append as an appendix to all manuals.

New in version 1.1.

	
texinfo_domain_indices

	If true, generate domain-specific indices in addition to the general index.
For e.g. the Python domain, this is the global module index. Default is
True.

This value can be a bool or a list of index names that should be generated,
like for html_domain_indices.

New in version 1.1.

	
texinfo_show_urls

	Control how to display URL addresses.

	'footnote' – display URLs in footnotes (default)

	'no' – do not display URLs

	'inline' – display URLs inline in parentheses

New in version 1.1.

	
texinfo_elements

	A dictionary that contains Texinfo snippets that override those Sphinx
usually puts into the generated .texi files.

	Keys that you may want to override include:

	'paragraphindent'

	Number of spaces to indent the first line of each paragraph, default
2. Specify 0 for no indentation.

	'exampleindent'

	Number of spaces to indent the lines for examples or literal blocks,
default 4. Specify 0 for no indentation.

	'preamble'

	Texinfo markup inserted near the beginning of the file.

	'copying'

	Texinfo markup inserted within the @copying block and displayed
after the title. The default value consists of a simple title page
identifying the project.

	Keys that are set by other options and therefore should not be overridden
are:

'author'
'body'
'date'
'direntry'
'filename'
'project'
'release'
'title'
'direntry'

New in version 1.1.

Options for the linkcheck builder

	
linkcheck_ignore

	A list of regular expressions that match URIs that should not be checked
when doing a linkcheck build. Example:

linkcheck_ignore = [r'http://localhost:\d+/']

New in version 1.1.

	
linkcheck_timeout

	A timeout value, in seconds, for the linkcheck builder. Only works in
Python 2.6 and higher. The default is to use Python’s global socket
timeout.

New in version 1.1.

	
linkcheck_workers

	The number of worker threads to use when checking links. Default is 5
threads.

New in version 1.1.

	
linkcheck_anchors

	True or false, whether to check the validity of #anchors in links.
Since this requires downloading the whole document, it’s considerably slower
when enabled. Default is True.

New in version 1.2.

Footnotes

	[1]	(1, 2) A note on available globbing syntax: you can use the standard shell
constructs *, ?, [...] and [!...] with the feature that
these all don’t match slashes. A double star ** can be used to match
any sequence of characters including slashes.

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 Internationalization

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

Internationalization

New in version 1.1.

Complementary to translations provided for Sphinx-generated messages such as
navigation bars, Sphinx provides mechanisms facilitating document translations
in itself. See the Options for internationalization for details on configuration.

[image: _images/translation.png]
Workflow visualization of translations in Sphinx. (The stick-figure is taken
from an XKCD comic [http://xkcd.com/779/].)

gettext [1] is an established standard for internationalization and
localization. It naïvely maps messages in a program to a translated string.
Sphinx uses these facilities to translate whole documents.

Initially project maintainers have to collect all translatable strings (also
referred to as messages) to make them known to translators. Sphinx extracts
these through invocation of sphinx-build -b gettext.

Every single element in the doctree will end up in a single message which
results in lists being equally split into different chunks while large
paragraphs will remain as coarsely-grained as they were in the original
document. This grants seamless document updates while still providing a little
bit of context for translators in free-text passages. It is the maintainer’s
task to split up paragraphs which are too large as there is no sane automated
way to do that.

After Sphinx successfully ran the
MessageCatalogBuilder you will find a collection
of .pot files in your output directory. These are catalog templates
and contain messages in your original language only.

They can be delivered to translators which will transform them to .po files
— so called message catalogs — containing a mapping from the original
messages to foreign-language strings.

Gettext compiles them into a binary format known as binary catalogs through
msgfmt for efficiency reasons. If you make these files discoverable
with locale_dirs for your language, Sphinx will pick them
up automatically.

An example: you have a document usage.rst in your Sphinx project. The
gettext builder will put its messages into usage.pot. Imagine you have
Spanish translations [2] on your hands in usage.po — for your builds to
be translated you need to follow these instructions:

	Compile your message catalog to a locale directory, say translated, so it
ends up in ./translated/es/LC_MESSAGES/usage.mo in your source directory
(where es is the language code for Spanish.)

msgfmt "usage.po" -o "translated/es/LC_MESSAGES/usage.mo"

	Set locale_dirs to ["translated/"].

	Set language to es (also possible via -D).

	Run your desired build.

Footnotes

	[1]	See the GNU gettext utilites [http://www.gnu.org/software/gettext/manual/gettext.html#Introduction]
for details on that software suite.

	[2]	Because nobody expects the Spanish Inquisition!

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 HTML theming support

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

HTML theming support

New in version 0.6.

Sphinx supports changing the appearance of its HTML output via themes. A
theme is a collection of HTML templates, stylesheet(s) and other static files.
Additionally, it has a configuration file which specifies from which theme to
inherit, which highlighting style to use, and what options exist for customizing
the theme’s look and feel.

Themes are meant to be project-unaware, so they can be used for different
projects without change.

Using a theme

Using an existing theme is easy. If the theme is builtin to Sphinx, you only
need to set the html_theme config value. With the
html_theme_options config value you can set theme-specific options
that change the look and feel. For example, you could have the following in
your conf.py:

html_theme = "default"
html_theme_options = {
 "rightsidebar": "true",
 "relbarbgcolor": "black"
}

That would give you the default theme, but with a sidebar on the right side and
a black background for the relation bar (the bar with the navigation links at
the page’s top and bottom).

If the theme does not come with Sphinx, it can be in two forms: either a
directory (containing theme.conf and other needed files), or a zip file
with the same contents. Either of them must be put where Sphinx can find it;
for this there is the config value html_theme_path. It gives a list
of directories, relative to the directory containing conf.py, that can
contain theme directories or zip files. For example, if you have a theme in the
file blue.zip, you can put it right in the directory containing
conf.py and use this configuration:

html_theme = "blue"
html_theme_path = ["."]

Builtin themes

	Theme overview
	

	[image: default]

default

	[image: sphinxdoc]

sphinxdoc

	[image: scrolls]

scrolls

	[image: agogo]

agogo

	[image: traditional]

traditional

	[image: nature]

nature

	[image: haiku]

haiku

	[image: pyramid]

pyramid

Sphinx comes with a selection of themes to choose from.

These themes are:

	basic – This is a basically unstyled layout used as the base for the
other themes, and usable as the base for custom themes as well. The HTML
contains all important elements like sidebar and relation bar. There are
these options (which are inherited by the other themes):

	nosidebar (true or false): Don’t include the sidebar. Defaults to
false.

	sidebarwidth (an integer): Width of the sidebar in pixels. (Do not
include px in the value.) Defaults to 230 pixels.

	default – This is the default theme, which looks like the Python
documentation [http://docs.python.org/]. It can be customized via these
options:

	rightsidebar (true or false): Put the sidebar on the right side.
Defaults to false.

	stickysidebar (true or false): Make the sidebar “fixed” so that it
doesn’t scroll out of view for long body content. This may not work well
with all browsers. Defaults to false.

	collapsiblesidebar (true or false): Add an experimental JavaScript
snippet that makes the sidebar collapsible via a button on its side.
Doesn’t work together with “rightsidebar” or “stickysidebar”. Defaults to
false.

	externalrefs (true or false): Display external links differently from
internal links. Defaults to false.

There are also various color and font options that can change the color scheme
without having to write a custom stylesheet:

	footerbgcolor (CSS color): Background color for the footer line.

	footertextcolor (CSS color): Text color for the footer line.

	sidebarbgcolor (CSS color): Background color for the sidebar.

	sidebarbtncolor (CSS color): Background color for the sidebar collapse
button (used when collapsiblesidebar is true).

	sidebartextcolor (CSS color): Text color for the sidebar.

	sidebarlinkcolor (CSS color): Link color for the sidebar.

	relbarbgcolor (CSS color): Background color for the relation bar.

	relbartextcolor (CSS color): Text color for the relation bar.

	relbarlinkcolor (CSS color): Link color for the relation bar.

	bgcolor (CSS color): Body background color.

	textcolor (CSS color): Body text color.

	linkcolor (CSS color): Body link color.

	visitedlinkcolor (CSS color): Body color for visited links.

	headbgcolor (CSS color): Background color for headings.

	headtextcolor (CSS color): Text color for headings.

	headlinkcolor (CSS color): Link color for headings.

	codebgcolor (CSS color): Background color for code blocks.

	codetextcolor (CSS color): Default text color for code blocks, if not
set differently by the highlighting style.

	bodyfont (CSS font-family): Font for normal text.

	headfont (CSS font-family): Font for headings.

	sphinxdoc – The theme used for this documentation. It features a sidebar
on the right side. There are currently no options beyond nosidebar and
sidebarwidth.

	scrolls – A more lightweight theme, based on the Jinja documentation [http://jinja.pocoo.org/]. The following color options are available:

	headerbordercolor

	subheadlinecolor

	linkcolor

	visitedlinkcolor

	admonitioncolor

	agogo – A theme created by Andi Albrecht. The following options are
supported:

	bodyfont (CSS font family): Font for normal text.

	headerfont (CSS font family): Font for headings.

	pagewidth (CSS length): Width of the page content, default 70em.

	documentwidth (CSS length): Width of the document (without sidebar),
default 50em.

	sidebarwidth (CSS length): Width of the sidebar, default 20em.

	bgcolor (CSS color): Background color.

	headerbg (CSS value for “background”): background for the header area,
default a grayish gradient.

	footerbg (CSS value for “background”): background for the footer area,
default a light gray gradient.

	linkcolor (CSS color): Body link color.

	headercolor1, headercolor2 (CSS color): colors for <h1> and <h2>
headings.

	headerlinkcolor (CSS color): Color for the backreference link in
headings.

	textalign (CSS text-align value): Text alignment for the body, default
is justify.

	nature – A greenish theme. There are currently no options beyond
nosidebar and sidebarwidth.

	pyramid – A theme from the Pyramid web framework project, designed by
Blaise Laflamme. There are currently no options beyond nosidebar and
sidebarwidth.

	haiku – A theme without sidebar inspired by the Haiku OS user guide [http://www.haiku-os.org/docs/userguide/en/contents.html]. The following
options are supported:

	full_logo (true or false, default false): If this is true, the header
will only show the html_logo. Use this for large logos. If this
is false, the logo (if present) will be shown floating right, and the
documentation title will be put in the header.

	textcolor, headingcolor, linkcolor, visitedlinkcolor,
hoverlinkcolor (CSS colors): Colors for various body elements.

	traditional – A theme resembling the old Python documentation. There are
currently no options beyond nosidebar and sidebarwidth.

	epub – A theme for the epub builder. This theme tries to save visual
space which is a sparse resource on ebook readers. The following options
are supported:

	relbar1 (true or false, default true): If this is true, the
relbar1 block is inserted in the epub output, otherwise it is omitted.

	footer (true or false, default true): If this is true, the
footer block is inserted in the epub output, otherwise it is ommitted.

Creating themes

As said, themes are either a directory or a zipfile (whose name is the theme
name), containing the following:

	A theme.conf file, see below.

	HTML templates, if needed.

	A static/ directory containing any static files that will be copied to the
output static directory on build. These can be images, styles, script files.

The theme.conf file is in INI format [1] (readable by the standard
Python ConfigParser module) and has the following structure:

[theme]
inherit = base theme
stylesheet = main CSS name
pygments_style = stylename

[options]
variable = default value

	The inherit setting gives the name of a “base theme”, or none. The
base theme will be used to locate missing templates (most themes will not have
to supply most templates if they use basic as the base theme), its options
will be inherited, and all of its static files will be used as well.

	The stylesheet setting gives the name of a CSS file which will be
referenced in the HTML header. If you need more than one CSS file, either
include one from the other via CSS’ @import, or use a custom HTML template
that adds <link rel="stylesheet"> tags as necessary. Setting the
html_style config value will override this setting.

	The pygments_style setting gives the name of a Pygments style to use for
highlighting. This can be overridden by the user in the
pygments_style config value.

	The options section contains pairs of variable names and default values.
These options can be overridden by the user in html_theme_options
and are accessible from all templates as theme_<name>.

Templating

The guide to templating is helpful if you want to write your
own templates. What is important to keep in mind is the order in which Sphinx
searches for templates:

	First, in the user’s templates_path directories.

	Then, in the selected theme.

	Then, in its base theme, its base’s base theme, etc.

When extending a template in the base theme with the same name, use the theme
name as an explicit directory: {% extends "basic/layout.html" %}. From a
user templates_path template, you can still use the “exclamation mark”
syntax as described in the templating document.

Static templates

Since theme options are meant for the user to configure a theme more easily,
without having to write a custom stylesheet, it is necessary to be able to
template static files as well as HTML files. Therefore, Sphinx supports
so-called “static templates”, like this:

If the name of a file in the static/ directory of a theme (or in the user’s
static path, for that matter) ends with _t, it will be processed by the
template engine. The _t will be left from the final file name. For
example, the default theme has a file static/default.css_t which uses
templating to put the color options into the stylesheet. When a documentation
is built with the default theme, the output directory will contain a
_static/default.css file where all template tags have been processed.

	[1]	It is not an executable Python file, as opposed to conf.py,
because that would pose an unnecessary security risk if themes are
shared.

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 Templating

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

Templating

Sphinx uses the Jinja [http://jinja.pocoo.org] templating engine for its HTML
templates. Jinja is a text-based engine, and inspired by Django templates, so
anyone having used Django will already be familiar with it. It also has
excellent documentation for those who need to make themselves familiar with it.

Do I need to use Sphinx’ templates to produce HTML?

No. You have several other options:

	You can write a TemplateBridge subclass that
calls your template engine of choice, and set the template_bridge
configuration value accordingly.

	You can write a custom builder that derives from
StandaloneHTMLBuilder and calls your template
engine of choice.

	You can use the PickleHTMLBuilder that produces
pickle files with the page contents, and postprocess them using a custom tool,
or use them in your Web application.

Jinja/Sphinx Templating Primer

The default templating language in Sphinx is Jinja. It’s Django/Smarty inspired
and easy to understand. The most important concept in Jinja is template
inheritance, which means that you can overwrite only specific blocks within a
template, customizing it while also keeping the changes at a minimum.

To customize the output of your documentation you can override all the templates
(both the layout templates and the child templates) by adding files with the
same name as the original filename into the template directory of the structure
the Sphinx quickstart generated for you.

Sphinx will look for templates in the folders of templates_path
first, and if it can’t find the template it’s looking for there, it falls back
to the selected theme’s templates.

A template contains variables, which are replaced with values when the
template is evaluated, tags, which control the logic of the template and
blocks which are used for template inheritance.

Sphinx’ basic theme provides base templates with a couple of blocks it will
fill with data. These are located in the themes/basic subdirectory of
the Sphinx installation directory, and used by all builtin Sphinx themes.
Templates with the same name in the templates_path override templates
supplied by the selected theme.

For example, to add a new link to the template area containing related links all
you have to do is to add a new template called layout.html with the
following contents:

{% extends "!layout.html" %}
{% block rootrellink %}
 Project Homepage »
 {{ super() }}
{% endblock %}

By prefixing the name of the overridden template with an exclamation mark,
Sphinx will load the layout template from the underlying HTML theme.

Important: If you override a block, call {{ super() }} somewhere to
render the block’s content in the extended template – unless you don’t want
that content to show up.

Working with the builtin templates

The builtin basic theme supplies the templates that all builtin Sphinx
themes are based on. It has the following elements you can override or use:

Blocks

The following blocks exist in the layout.html template:

	doctype

	The doctype of the output format. By default this is XHTML 1.0 Transitional
as this is the closest to what Sphinx and Docutils generate and it’s a good
idea not to change it unless you want to switch to HTML 5 or a different but
compatible XHTML doctype.

	linktags

	This block adds a couple of <link> tags to the head section of the
template.

	extrahead

	This block is empty by default and can be used to add extra contents into
the <head> tag of the generated HTML file. This is the right place to
add references to JavaScript or extra CSS files.

	relbar1 / relbar2

	This block contains the relation bar, the list of related links (the
parent documents on the left, and the links to index, modules etc. on the
right). relbar1 appears before the document, relbar2 after the
document. By default, both blocks are filled; to show the relbar only
before the document, you would override relbar2 like this:

{% block relbar2 %}{% endblock %}

	rootrellink / relbaritems

	Inside the relbar there are three sections: The rootrellink, the links
from the documentation and the custom relbaritems. The rootrellink is a
block that by default contains a list item pointing to the master document
by default, the relbaritems is an empty block. If you override them to
add extra links into the bar make sure that they are list items and end with
the reldelim1.

	document

	The contents of the document itself. It contains the block “body” where the
individual content is put by subtemplates like page.html.

	sidebar1 / sidebar2

	A possible location for a sidebar. sidebar1 appears before the document
and is empty by default, sidebar2 after the document and contains the
default sidebar. If you want to swap the sidebar location override this and
call the sidebar helper:

{% block sidebar1 %}{{ sidebar() }}{% endblock %}
{% block sidebar2 %}{% endblock %}

(The sidebar2 location for the sidebar is needed by the sphinxdoc.css
stylesheet, for example.)

	sidebarlogo

	The logo location within the sidebar. Override this if you want to place
some content at the top of the sidebar.

	footer

	The block for the footer div. If you want a custom footer or markup before
or after it, override this one.

The following four blocks are only used for pages that do not have assigned a
list of custom sidebars in the html_sidebars config value. Their use
is deprecated in favor of separate sidebar templates, which can be included via
html_sidebars.

	sidebartoc

	The table of contents within the sidebar.

Deprecated since version 1.0.

	sidebarrel

	The relation links (previous, next document) within the sidebar.

Deprecated since version 1.0.

	sidebarsourcelink

	The “Show source” link within the sidebar (normally only shown if this is
enabled by html_show_sourcelink).

Deprecated since version 1.0.

	sidebarsearch

	The search box within the sidebar. Override this if you want to place some
content at the bottom of the sidebar.

Deprecated since version 1.0.

Configuration Variables

Inside templates you can set a couple of variables used by the layout template
using the {% set %} tag:

	
reldelim1

	The delimiter for the items on the left side of the related bar. This
defaults to ' »' Each item in the related bar ends with the value
of this variable.

	
reldelim2

	The delimiter for the items on the right side of the related bar. This
defaults to ' |'. Each item except of the last one in the related bar
ends with the value of this variable.

Overriding works like this:

{% extends "!layout.html" %}
{% set reldelim1 = ' >' %}

	
script_files

	Add additional script files here, like this:

{% set script_files = script_files + ["_static/myscript.js"] %}

	
css_files

	Similar to script_files, for CSS files.

Helper Functions

Sphinx provides various Jinja functions as helpers in the template. You can use
them to generate links or output multiply used elements.

	
pathto(document)

	Return the path to a Sphinx document as a URL. Use this to refer to built
documents.

	
pathto(file, 1)

	Return the path to a file which is a filename relative to the root of the
generated output. Use this to refer to static files.

	
hasdoc(document)

	Check if a document with the name document exists.

	
sidebar()

	Return the rendered sidebar.

	
relbar()

	Return the rendered relation bar.

Global Variables

These global variables are available in every template and are safe to use.
There are more, but most of them are an implementation detail and might change
in the future.

	
builder

	The name of the builder (e.g. html or htmlhelp).

	
copyright

	The value of copyright.

	
docstitle

	The title of the documentation (the value of html_title).

	
embedded

	True if the built HTML is meant to be embedded in some viewing application
that handles navigation, not the web browser, such as for HTML help or Qt
help formats. In this case, the sidebar is not included.

	
favicon

	The path to the HTML favicon in the static path, or ''.

	
file_suffix

	The value of the builder’s out_suffix
attribute, i.e. the file name extension that the output files will get. For
a standard HTML builder, this is usually .html.

	
has_source

	True if the reST document sources are copied (if html_copy_source
is true).

	
last_updated

	The build date.

	
logo

	The path to the HTML logo image in the static path, or ''.

	
master_doc

	The value of master_doc, for usage with pathto().

	
next

	The next document for the navigation. This variable is either false or has
two attributes link and title. The title contains HTML markup. For
example, to generate a link to the next page, you can use this snippet:

{% if next %}
{{ next.title }}
{% endif %}

	
pagename

	The “page name” of the current file, i.e. either the document name if the
file is generated from a reST source, or the equivalent hierarchical name
relative to the output directory ([directory/]filename_without_extension).

	
parents

	A list of parent documents for navigation, structured like the next
item.

	
prev

	Like next, but for the previous page.

	
project

	The value of project.

	
release

	The value of release.

	
rellinks

	A list of links to put at the left side of the relbar, next to “next” and
“prev”. This usually contains links to the general index and other indices,
such as the Python module index. If you add something yourself, it must be a
tuple (pagename, link title, accesskey, link text).

	
shorttitle

	The value of html_short_title.

	
show_source

	True if html_show_sourcelink is true.

	
sphinx_version

	The version of Sphinx used to build.

	
style

	The name of the main stylesheet, as given by the theme or
html_style.

	
title

	The title of the current document, as used in the <title> tag.

	
use_opensearch

	The value of html_use_opensearch.

	
version

	The value of version.

In addition to these values, there are also all theme options available
(prefixed by theme_), as well as the values given by the user in
html_context.

In documents that are created from source files (as opposed to
automatically-generated files like the module index, or documents that already
are in HTML form), these variables are also available:

	
meta

	Document metadata (a dictionary), see File-wide metadata.

	
sourcename

	The name of the copied source file for the current document. This is only
nonempty if the html_copy_source value is true.

	
toc

	The local table of contents for the current page, rendered as HTML bullet
lists.

	
toctree

	A callable yielding the global TOC tree containing the current page, rendered
as HTML bullet lists. Optional keyword arguments:

	collapse (true by default): if true, all TOC entries that are not
ancestors of the current page are collapsed

	maxdepth (defaults to the max depth selected in the toctree directive):
the maximum depth of the tree; set it to -1 to allow unlimited depth

	titles_only (false by default): if true, put only toplevel document
titles in the tree

 Copyright 2007-2011, Georg Brandl.
 Created using Sphinx 1.2pre.

 Brought to you by Read the Docs

 	latest

 	1.1.3

 	1.0.8

 Sphinx Extensions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.2 (hg) documentation

Sphinx Extensions

Since many projects will need special features in their documentation, Sphinx is
designed to be extensible on several levels.

This is what you can do in an extension: First, you can add new
builders to support new output formats or actions on the parsed
documents. Then, it is possible to register custom reStructuredText roles and
directives, extending the markup. And finally, there are so-called “hook
points” at strategic places throughout the build process, where an extension can
register a hook and run specialized code.

An extension is simply a Python module. When an extension is loaded, Sphinx
imports this module and executes its